20ar18-com 第一章整式的乘除 2幂的乘方与积的乘方(第1课时)
第一章 整式的乘除 2 幂的乘方与积的乘方(第1课时)
20ar18-com 课前展示
课前展示
20ar18-com n个a 幂的意义: ia…·a= 同底数幂乘法的运算性质:0=0+ arm·an=(aa…a)(aa…a m个a n个a =… mtn (m+n)个a 同愿 ,愿数不亚
同底数幂乘法的运算性质: a m · an =(a·a· … ·a) m个a = a·a· … ·a (m+n)个a = am+n a m·a n= a m+n a·a· … ·a n个a a 幂的意义: n = 同底数幂相乘,底数不变,指数相加. ·(a·a· … ·a) n个a
20ar18-com 创境激趣
创境激趣
20ar18-com 情境引入 正方体的体积之比=边长比的立方 乙正方体的棱长是2cm,则乙正方体的体积 V,=8 cm 甲正方体的棱长是乙正方体的5倍,则甲正方 体的体积v甲=1000cm3 可以看出,阳是吃的125倍
情境引入 乙正方体的棱长是 2 cm, 则乙正方体的体积 V乙= cm3 可以看出,V甲 是 V乙 的 倍 8 125 即 5 3 倍 边长比的 甲正方体的棱长是乙正方体的 5 倍,则甲正方 体的体积 V甲= cm3 1000 正方体的体积之比= 立方
20ar18-com 情境引入 地球、木星、太阳可以近似地看做是 球体木星、太阳的半径分别约是地球的 10倍和102倍,它们的体积分别约是地球的 多少倍? 木星 103倍 4 地球 (102)3倍 球-3 其中是体积 太阳 是球的半径
情境引入 地球、木星、太阳可以近似地看做是 球体 .木星、太阳的半径分别约是地球的 10倍和102倍,它们的体积分别约是地球的 多少倍? V球= —πr3 , 其中V是体积、r 是球的半径 3 4 103倍 (102 ) 3倍
20ar18-com 探究新知 你知道(102)3等于多少吗? (102)3 102×102×102(根据幂的意义 102+22(根据同底数幂的乘法) =106=102×3
探究新知 你知道(102) 3等于多少吗? (102 ) 3 =102×102×102 =102+2+2 =102×3 =106 (根据 ). (根据 ). 同底数幂的乘法 幂的意义
20ar18-com 自主探究 合作交流 展示汇报
自主探究 合作交流 展示汇报
20ar18-com 探究新知 做一做:计算下列各式,并说明理由 (1)(62)4;(2)(a2)3;(3)(am)2;(4)(am)y 解:(1)(6)4=62626262=6212=68=62×4; (2)(a2)3=a2a2m2=a2+2+2=a6=a2×3; ()(am=am-am=am+m=a2m n个a (4)(am)y=amam,…am n、n m =mtm+. tm
个a m =a m·am· … ·am 探究新知 做一做:计算下列各式,并说明理由 . (1) (62 ) 4 ; (2) (a 2 ) 3 ; (3) (a m) 2 ; (4) (a m) n . 解:(1) (62 ) 4 (2) (a 2 ) 3 (3) (a m) 2 = 62·62·6 2·62=62+2+2+2 =68 = a 2·a 2·a 2=a 2+2+2 =a 6 =a m·a m =a m+m =62×4 (6 ; 2 ) 4 =a 2×3 ; (a 2 ) 3 =a 2m ; (a m) 2 n (4) (a m) n =a mn 个m =a m+m+ … +m n m n mn (a ) = a
20ar18-com 探究新知 幂的乘方法则 (ap)n=amn(m2n都是正整数) 幂的乘方,底数不变,指数相乘
探究新知 幂的乘方,底数 ,指数 . (am) n=amn (m,n都是正整数) 不变 相乘 幂的乘方法则