111三角形的高中线与角平分线(3)
11.1 三角形的高.中线与角平分线(3)
知识回顾 你还记得“过直线外一点画已知直线的垂线”怎么画 吗?
知识回顾 你还记得 “过直线外一点画已知直线的垂线”怎么画 吗? ●A M l ●
画一画 三角形的高 (1)画一个锐角△ABC 过A点向它所对的边BC所在 的直线画垂线,垂足为D; 顶点和垂足之间的线段F E 叫做三角形的高。 如图,线段AD是BC边上的高. (2)你能画出其他两边上的高吗? 通过画图你发现了什么? 三角形的三条高线交于一点
画一画 (1)画一个锐角 ABC, 过A点向它所对的边BC所在 的直线画垂线,垂足为D; A B C ● D ● 顶点和垂足之间的线段 叫做三角形的高。 如图, 线段AD是BC边上的高. (2)你能画出其他两边上的高吗? 通过画图你发现了什么? 三角形的三条高线交于一点 ● ● ● ● ● H F E 三角形的高
大挑战你能画出直角三角形和钝角三角形 的三条高吗? 讨论,观察直角三角形和钝角三角形的三条高, 你又有什么发现? 角鲦裔绪道线詨点
大挑战 你能画出直角三角形和钝角三角形 的三条高吗? ● ● 观察直角三角形和钝角三角形的三条高, 你又有什么发现? 讨论 三角形的三条高线所在的直线交于一点 三角形的三条高线交于一点
三角形的中线 A 连结ABC的顶点A 和它所对的边BC的中点D, 线段AD叫做AABC的边 BC上的中线。 (1)画出△ABC的另外两边上的中线; (2)说出哪条线段是AABC的哪条边上的中线; 观察AABC的三条中线,说说你的发现。 把刚才的锐角三角形换成直角三角形或钝角三角形, 结果又怎么样呢? 三角形的三条中线在三角形的内部交手
三角形的中线 A B C ● ● D 连结ΔABC的顶点A 和它所对的边BC的中点D, 线段AD叫做ΔABC的边 BC上的中线。 (1)画出ΔABC的另外两边上的中线; (2)说出哪条线段是ΔABC的哪条边上的中线; 观察ΔABC的三条中线,说说你的发现。 把刚才的锐角三角形换成直角三角形或钝角三角形, 结果又怎么样呢? 三角形的三条中线在三角形的内部交于一点 E F ● ● ● ● ●
三角形的角平分线 画∠A的平分线AD, 交∠A所对的边BC于点D, 线段AD叫做AABC的 角平分线。 画一画画出AABC的另外两条角平分线; 想一想观察三条角平分线,说说你的发现 对于其它的任意三角形是不是也有同样的结果? 三角形的三条角平分线在三角形的内部交于一点
三角形的角平分线 A B D C ● ● F E ● ● ● ● 画∠A的平分线AD, 交∠A所对的边BC于点D, 线段AD叫做ΔABC的 角平分线。 画出ΔABC的另外两条角平分线; 观察三条角平分线,说说你的发现。 画一画 想一想 三角形的三条角平分线在三角形的内部交于一点 对于其它的任意三角形是不是也有同样的结果?
练一练 1、下列各个图形中,哪一个图形中AD是△ABC的高(D C B C D A B (C) (D) 2、填空: (1)如图(1),AD,BE,CF是△ABC的三条中线, AB=2 BD g AE= 2 (2)如图(2),AD,BE,CF是AABC的三条角平分 线,则∠1= ∠3= ,∠ACB=2 A E c 图1 图2
1、下列各个图形中,哪一个图形中AD是△ABC 的高( ) A D C B A B C D A C B D A B C D (A) (B) (C) (D) 练一练 2、填空: (1)如图(1),AD,BE,CF是ΔABC的三条中线,则 AB=2 ,BD= ,AE= 。 (2)如图(2),AD,BE,CF是ΔABC的三条角平分 线,则∠1= , ∠3= , ∠ACB=2 。 2 1 2 1 图2 F E B D C A 3 4 1 2 图1 F E B D C A D
3如图,在△ABC中,AE是中线, AD是角平分线,AF是高。填空: (1)BE=CE_1 BE 2 (2)∠BAD=∠CAD=-∠BAC (3)∠AFB=∠AFC=90°; (4)S BC.AF △AABC9 EDF B
3.如图,在ΔABC中,AE是中线, AD是角平分线,AF是高。填空: (1)BE= = ; (2)∠BAD= = ; (3)∠AFB= =90° ; (4)SΔABC = 。 2 1 2 1 E D F C B A CE BE ∠CAD ∠BAC ∠AFC BC•AF 2 1
拓展 1、在△ABc中,CD是中线,已知 BcAC=5cm,△DBC的周长为 25cm,求△ADc的周长 6心3
1、在ΔABC中,CD是中线,已知 BC-AC=5cm, ΔDBC的周长为 25cm,求ΔADC的周长. A D B C 拓展
2、三角形的一条中线 是否将这个三角形分成面 积相等的两个三角形?为什 么?
2、三角形的一条中线 是否将这个三角形分成面 积相等的两个三角形?为什 么?