earE 24、1、1圆
24、1、1 圆
生漘中的数学阃题 手拉手友好学校的小强同学今天给我们发出了一个求助 电话,问题是这样的: 他们学校的破旧篮球场地只有篮球架,没有场地线 为了开展初三同学的篮球比赛,他们打算自己画个场地, 你能帮助他们自己动手画出场地中的圆吗? 学校现有场地 改造参考图
手拉手友好学校的小强同学今天给我们发出了一个求助 电话,问题是这样的: 他们学校的破旧篮球场地只有篮球架,没有场地线。 为了开展初三同学的篮球比赛,他们打算自己画个场地, 你能帮助他们自己动手画出场地中的圆吗? 学校现有场地 改造参考图
己会a 交流探究生濡数学矧讽 画圆
画圆
数学烟讽提炼 如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做 固定的端点O叫做圆心 我国古人很早 对圆就有这样 线段OA叫做半径 的认识了,战 国时的《墨经》 以点O为圆心的圆,记作 就有“圆, 中同长也”的 ⊙C,读作“圆C 记载.它的意 思是圆上各点 到圆心的距离 都等于半径
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做 圆. · r O A 固定的端点O叫做圆心 线段OA叫做半径 以点O为圆心的圆,记作 “⊙O”,读作“圆O” . 我国古人很早 对圆就有这样 的认识了,战 国时的《墨经》 就有“圆,一 中同长也”的 记载.它的意 思是圆上各点 到圆心的距离 都等于半径.
earE 从画圆的过程可以看出 (1)圆上各点到定点(圆心O)的距离都等 于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆 上 归纳:圆心为Q半径为圆可以 看成是所有到定点O的距离等于定长r的点 的集合
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r); 归纳:圆心为O、半径为r的圆可以 看成是所有到定点O的距离等于定长r 的点 的集合. 从画圆的过程可以看出: (2)到定点的距离等于定长的点都在同一个圆 上.
学以致用圆的椭密生你能疏这个 车轮为什么圆的,而不是椭圆或其他图形呢?
车轮为什么圆的,而不是椭圆或其他图形呢? 学习了圆的概念,你能说说这个 生活实例中的数学奥秘吗?
earE 分析 中中 心心 与与 边路 中心与边緣距离不相等 缘面 距距 中心与路面距离不相等 离离 相相 等等
中 心 与 路 面 距 离 相 等 中 心 与 边 缘 距 离 相 等 中心与边缘距离不相等 中心与路面距离不相等 分析
earE 为什么车轮是圆的 把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半 径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆」 平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数 道理 平稳
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半 径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在 平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学 道理. 为什么车轮是圆的 平稳
让我仙成为会学习的孩于 自学教材79页最后三个段落,弄清楚以下问题: 1、介绍了圆中的那几个相关概念。 2、这几个概念的表示方法是怎样的。 3、提醒同学们区分这几个概念应注意什么
自学教材79页最后三个段落,弄清楚以下问题: 1、介绍了圆中的那几个相关概念。 2、这几个概念的表示方法是怎样的。 3、提醒同学们区分这几个概念应注意什么
麵炽梳魂 弦的定义: 连接圆上任意两点的线段叫弦 如:弦cD 经过圆心的弦叫直径 如:直径AB A B 圆上任意两点间的部分叫圆弧 以C、D为端点的弧记作CD,读 作“弧CD
● O C D A B 连接圆上任意两点的线段叫弦 弦的定义: 如:弦CD 经过圆心的弦叫直径 圆上任意两点间的部分叫圆弧 以C、D为端点的弧记作CD,读 作“弧CD” 如:直径AB 知识梳理