免费下载网址htt:/ jiaoxue5uys168com/ 提公因式法 ◆教学目标◆ ◆知识与技能:使学生了解因式分解的概念,以及因式分解与整式乘法的关系.会用提取公 因式的方法分解因式 ◆过程与方法:在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法 ◆情感态度:通过综合运用提公因式法分解因式,进一步培养学生的观察和联想能力.通 过知识结构图培养学生归纳总结的能力 ◆教学重点与难点◆ ◆重点:会用提公因式法分解因式 ◆难点:如何确定公因式以及提出公因式后的另外一个因式 ◆教学过程◆ 提出问题,创设情境 [师]请同学们完成下列计算,看谁算得又准又快.(出示投影片) (1)20×(-3)2+60×(-3)(2)1012-992(3)572+2×57×43+432 [师]在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简 单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形式,这 就是我们从今天开始要探究的内容——因式分解. 二,导入新课1.分析讨论,探究新知 把下列多项式写成整式的乘积的形式出示投影片 (1)x+x一 (2)x2-1 (3) am+bmtcm 生]根据整式乘法和逆向思维原理,可以做如下计算: 1)x2+x=x(x+1)(2)x2-1=(x+1)(x-1)(3)am+bm+cm=m(a+b+c) [师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也 叫把这个多项式分解因式 可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维 再观察上面的第(1)题和第(3)题,你能发现什么特点. [生]我发现(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m,是不是 可以叫这些公共因式为各自多项式的公因式呢? [师]你分析得合情合理 因为ma+mb+mc=m(a+bc) 于是就把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个 因式a+b+c是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法 2.例题教学,运用新知.出示投影片 [例1把8ab2-12abc分解因式.[例2]把2a(b+c)-3(b+c)分解因式 例3]把3x-6xy+x分解因式.[例匀]把-4a3+16a2-18a分解因式 [例5]把6(x-2)+x(2-x)分解因式 (让学生利用提公因式法的定义尝试独立完成,然后与同伴交流解题心得,教师深入到学 生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结) 例1分析:先找出8a3b2与12abc的公因式,再提出公因式.我们看这两项的系数8与 12,它们的最大公约数是4,两项的字母部分ab2与abc都含有字母a和b.其中a的最低 次数是1,b的最低次数是2.我们选定4ab2为要提出的公因式.提出公因式4ab2后,另 解压密码联系qq19139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 提公因式法 ◆教学目标◆ ◆知识与技能:使学生了解因式分解的概念,以及因式分解与整式乘法的关系.会用提取公 因式的方法分解因式. ◆过程与方法:在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法.. ◆情感态度:通过 综合运用提公因式法分解因式,进一步培养学生的观察和联 想能力.通 过知识结构图培养学生归纳总结的能力. ◆教学重点与难点◆ ◆重点:会用提公因式法分解因式 ◆难点:如何确定公因式以及提出公因式后的另外一个因式 ◆教学过程◆ 一.提出问题,创设情境 [师]请同学们完成下列计算,看谁算得又准又快.(出示投影片) (1)20×(-3) 2 +60×(-3) (2)1012 -992 (3)572 +2×57×43+432 [师]在上述 运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简 单易行,类似地,在式的变形中, 有时也需要将一个多项式写成几个整式的乘积形式,这 就是我们从今天开始要探究的内容──因式分解. 二.导入新课 1.分析讨论,探究新知. 把下列多项式写成整式的乘积的形式 出示投影片 (1)x 2 +x=_________ (2)x 2 -1=_________ (3)am+bm+cm=__________ [生]根据整式乘法和逆向思维原理,可以做如下计算: (1)x 2 +x=x(x+1) (2)x 2 -1=(x+1)(x-1) (3)am+bm+cm=m(a+b+c) [师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这 个多项式因式分解,也 叫把这个多项式分解因式. 可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维. 再观察上面的第(1)题和第(3)题,你能发现什么特点. [生]我发现(1)中各项都有一个公共的因式 x,(2)中各项都有一个公共因式 m,是 不是 可以叫这些公共因式为各自多项式的 公因式呢? [师]你分析得合情合理. 因为 ma+mb+mc=m(a+b+c). 于是就把 ma+mb+mc 分解成两个因式乘积的形式, 其中一个因式是各项的公因式 m,另一个 因式 a+b+c 是 ma+mb+mc 除以 m 所得的商, 像这种分解因式的方法叫做提公因式法. 2.例题教学,运用新知.出示投影片: [例 1]把 8a3 b 2 -12ab3 c 分解因式. [例 2]把 2a(b+c)- 3(b+c)分解因式. [例 3]把 3x3 -6xy+x 分解因式. [例 4]把-4a3 +16a2 -18a 分解因式. [ 例 5]把 6(x-2)+x(2-x)分解因式. (让学生利用提公因式法的定义尝试独立完成,然后与同伴交 流解题心得, 教师深入到学 生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结) [例 1]分析:先找出 8a3 b 2 与 12ab3 c 的公因式,再提出公因式. 我们看这两项的系数 8 与 12,它们的最大公约数是 4,两项的字母部分 a 3 b 2 与 ab3 c 都含有字母 a 和 b.其中 a 的最低 次数是 1,b 的最低次数是 2.我们选定 4ab2 为要提出的公因式.提出公因式 4ab2 后, 另
免费下载网址htt:/ jiaoxue5uys168com/ 个因式2a2+3bc就不再有公因式了 解:8ab2+12ab2c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc) 总结:提取公因式后,要满足另一个因式不再有公因式才行 例2]分析:(b+c)是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项 式,也可以是多项式,是多项式时应整体考虑直接提出 解:2a(b+c)-3(b+c)=(b+c)(2a-3) [例3]解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1) 注意:如果单独成一项时,它在因式分解时不能漏掉 [例4]解:-4a+16a2-18a=(4a-16a2+18a)=-2a(2a2-8a+9) 注意:如果多项式的第一项的系数是负的,一般要提出“一”号,使括号内的第一项的系数 是正的.在提出“一”号时,多项式的各项都要变号.可以用一句话概括:首项有负常提负 [例5]分析:先找6(x-2)与x(2-x)的公因式,再提取公因式.因为2-x=-(x-2), 所以x-2即公因式 解:6(x-2)+x(2-x)=6(x-2)-x(x-2)=(x-2)(6-x). 总结:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,但可以发现公 因式,然后再提取公因式 三.随堂练习1.课本练习1、2.Ⅳ.课时小结 四.作业必做题:作业本(2)15.4.1提公因式法 选做题 ◆板书设计◆ 14.3.1提公因式法 因式分解的概念 因式分解与整式乘法的关系 提取公因式的方法 教后反思 ◆课后思考◆ 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘 宝网址: jiaoxue5u. taobao. com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘 宝网址:jiaoxue5u.taobao.com 一个因式 2a2 +3bc 就不再有公因式了. 解:8a3 b 2 +12ab2 c=4ab2·2a2 +4ab2 ·3bc=4ab2(2a2 +3bc). 总结:提取公因式后,要满足另一个因式不再有公因式才行. [例 2]分析:(b+c)是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项 式,也可以是多项式,是多项式时应整体考虑直接提出. 解:2a(b+c)-3(b+c)=(b+c)(2a-3). [例 3]解:3x2 -6xy+x=x·3x-x·6y+x·1=x(3x-6y+1). 注意:如果单独成一项时,它在因式分解时不能漏掉. [例4]解:-4a3 +16a2 -18a=-(4a3 -16a2 +18a) =-2a(2a2 -8a+9) 注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数 是正的.在提出“-”号时,多项式的各项都要变号.可以用一句话概括:首项有负常提负. [例 5]分析:先找 6(x-2)与 x(2-x)的公因式,再提取公因式.因为 2-x=-(x-2), 所以 x-2 即公因式. 解:6(x-2)+x(2-x)=6(x-2)-x(x-2) =(x-2)(6-x). 总结:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后, 但可以发现公 因式,然后再提取公因式. 三.随堂练习 1.课本练习 1、2. Ⅳ.课时小结 四.作业 必做题: 作业本(2)15.4.1 提公因式法 选做题: ◆板书设计◆ 14.3.1 提公因式法 因式分解的概念 因式分解与整式乘法的关系. 提取公因式的方法 教后反思: ◆课后思考◆