上游哀通大 SHANGHAI JIAO TONG UNIVERSITY 第二章分离变量法 §10.2一维热传导方程 漏 上海交通大学数学系 n 唐异垒 SHAN
第二章 分离变量法 上海交通大学数学系 唐异垒 §10.2 一维热传导方程
上游充大学 SHANGHAI JIAO TONG UNIVERSITY §10.2一维热传导方程 类齐次边界条件(两端温度恒定)的定解问题 8t a,1>0,0<r<L (1) u(0,t)=0,u(L,t)=0, u(x,0)=(x) u(x,t)=X(x)T(t)代入PDE和边界条件, XT-a2X"T=0; T'(t) X"(x) - X(O)T(t)=X(L)T(t)=0 a2T(t) X(x) X"+2X=0,(0<x<L) →固有问题 (2) X(0)=X(L)=0 T'+a2T=0,(3)
2 2 2 ( ) , 0, 0 I (1) (0, ) 0, ( , ) 0, ( ,0) ( ) u u a t xL t x u t uLt ux x φ ∂ ∂ = > << ∂ ∂ = = = 类齐次边界条件 两端温度恒定 的定解问题 (I) §10.2 一维热传导方程 u xt X xT t ( ,) ( ) () = 代入PDE和边界条件, 2 0; (0) ( ) ( ) ( ) 0 XT a X T X T t X LT t ′ ′′ − = = = 2 () ( ) () ( ) Tt X x aT t X x λ ′ ′′ ⇒ = =− 0, (0 ) 2 (0) ( ) 0 X X xL X XL ′′ + = << λ ⇒ = = 固有问题 ( ) 2 T aT ′ + = λ 0, (3)
上游充通大粤 SHANGHAI JIAO TONG UNIVERSITY 四>固有问题 X"+几X=0,(0<x<L) (2) X(0)=X(L)=0 k2π2 固有值 入== (k=1,23.…) (2≤0只有零解) 固有函数 kπ X(x)=Ck sin (k=1,2,L) T'+a2T=0,(3)→ 0=Rp21 (k=1,2,L)
(II) 固有问题 X ′′ + λX = 0, (0 < x < L) X (0) = X (L) = 0 固有值 固有函数 2 0, (3) TaT λk ′ +=⇒ 2 2 2 , ( 1 2,3...) k k k , L π λ λ = = = ( ) sin , ( 1, 2, ) k k k Xx C x k L π = = L 2 ( ) exp ( ) , ( 1, 2, ) k k k a Tt B t k L π =− = L ( 0 .) λ ≤ 只有零解 (2)
上游充通大 SHANGHAI JIAO TONG UNIVERSITY 特解的叠加 u(x,t)=∑Xx(x)Tk(t) k=1 =24e kπ sin X k=1 L 再由初始条件(x)=ux,0)=∑4,sn kπ k=1 4=20xsn经d血 kπ
(III) 特解的叠加 sin ( , ) ( ) ( ) 1 1 2 ∑ ∑ ∞ = − ∞ = = = k t L k a k k k k x L k A e u x t X x T t π π 1 ( ) ( ,0) sin k k k x ux A x L π φ ∞ = 再由初始条件 = = ∑ 0 2 ( )sin d . L k k A x xx L L π = φ ∫
上游充通大 SHANGHAI JIAO TONG UNIVERSITY u三p(x) u,a'uxx ulx=o=u 0. u=T(t)X(x) X(0)=X(L)=0 分离变量流程图 T1a2T)=X"1X=-元 T'+a2B2T=0 X"+B2X=0 T=Aexp(-a"B"t) X=sin Bx,.B=℉ 4=T(0X(x u=u(x,t) u=∑TXx
ut a uxx 2 = 0 | |0 x xl u u u | t=0= ϕ(x) = = = = u = T(t)X (x) X (0) = X (L) = 0 T'/(a T ) = X" / X = −λ 2 2 2 Ta T ' 0 + = β 2 X X " 0 + = β 2 2 TA a t = − exp( ) β sin , n l X x π = = β β u T (t)X (x) k = k k ) u = ∑Tk Xk u = u(x,t 分离变量流程图
上游通大学 SHANGHAI JIAO TONG UNIVERSITY 4,=a2ua, 00 类齐次边界条件 u(0,t)=0=u(l,t),t>0 u(x,0)=(x), 0≤x≤1 解:令 九=0→X=B。 九>0时,X"+九X=0→ u(x,t)=X(x)T(t) X=Asin几x+Bcos几x, X"+X=00<x<1 X'(0)=0,X'(I)=0 X'(0)=AV元=0,X'(U=-BV元sin√l=0 T'+a2T=0 因有他人司0=123礼 2<0,无非零解. →固有函数X,(x)=B.cos":
u(x,t) = X (x)T(t) 2 T aT ′ + = λ 0 ′ = ′ = ′′ + = + =⇒ ′′ = + 时 2 , 0 ,0 (0, ) 0 ( , ), 0 ( ,0) ( ), 0 t xx x x u au x lt u t u lt t ux x φ x l = = = > = ≤ ≤ X A Xl B l ′ ′ (0) 0, ( ) sin 0 == = λ λλ − = 2 , 1,2,3, n n n l π λ ⇒ == 固有值 L ( ) cos n n n Xx B x l π ⇒ = 固有函数
上游充通大粤 nπ T'+a2λT=0 SHANGHAI JIAO TONG UNIVERSITY Y,(x)=B,cos 元=0→T0=0→T=A→40=XT0=BA,=C0 2 anπ >0-T+g7.=0一7,=4e 2 2.22 anπ1 un =XT A.Be nπ coS-x =Ce 1 nπ coS X 得到一系列分离变量形式的解,满足PDE和齐次边界条件,但 不满足初始条件。由叠加原理,设原问题的解为 u=∑,=C+∑C,e 12 nπ cos n=0 n= (x,0)=(x)=C+∑Cco nπ -x n=l CXx.C-cos-
0 2 T′ + a λT = λ = 0 T0 ′ = 0 T A 0 0 = λ > 0 0 2 2 2 2 n ′ + Tn = l a n T π t l a n n n T A e 2 2 2 2 π − = u0 = X0T0 = B0A0 = C0 得到一系列分离变量形式的解,满足PDE和齐次边界条件,但 不满足初始条件。由叠加原理,设原问题的解为 x l n A B e t l a n n n π π cos 2 2 2 2 − n n n = u = X T x l n C e t l a n n π π cos 2 2 2 2 − = ( ) cos , n n n Xx B x l π = 22 2 2 0 0 1 cos a n t l n n n n n u u C Ce x l π π ∞ ∞ − = = = = + ∑ ∑ 0 1 ( ,0) ( ) cos n n n ux x C C x l π φ ∞ = = = +∑ 0 0 0 1 2 ( )d , ( )cos d l l n n C x xC x xx l ll π = φ φ = ∫ ∫ ∈
上游充大 SHANGHAI JIAO TONG UNIVERSITY 川类齐次边界条件 4,=a24u, 00 u(0,t)=0=w(l,t)+hu(l,t),t>0 u(x,0)=p(x), 0≤x≤1 解: u(x,t)=X(x)T(t)代入PDE和边界条件, 固有问题 X"+X=0 0<x<1 X(0)=0, X'()+hX()=0 入≤0,无非零解. T'+a2T=0
2 T aT ′ + = λ 0 0 0 (0) 0, ( ) ( ) 0 X X xl X X l hX l ′′ + = == + > = ≤ ≤ (I) u xt X xT t ( ,) ( ) () = 代入PDE和边界条件, (II) 固有问题
上游充通大 SHANGHAI JIAO TONG UNIVERSITY 入>0时,X"+九X=0→ X=Asin几x+Bcos√2x, X(0)=B=0, X'(I)+hX()=A(V元cos√l+hsin√)=0 三tanAl=-√元/h. →tanz=az,其中=k2,z=kl=Vl,a=-1/(hl) 有根zn∈(n-1/2)m,(n+1/2)π),n=1,2, →同有值-(号=12L →固有函数X,()=A,sinx T'+a2九nT=0→ -a T(t)=Ce--Ce 12 (n=1,2,L→
0, 0 sin cos , X X X A xB x λ λ λ λ > + =⇒ ′′ = + 时 (0) 0, ( ) ( ) ( cos sin ) 0 tan / . X B X l hX l A l h l l h λλ λ λ λ = = ′ += + = ⇒ =− 2 , 1,2, n n z l λ n = ⇒ = 固有值 L ( ) sin n n n z Xx A x l ⇒固有函数 = 2 tan , , , 1/ ( ). (( 1/ 2) ,( 1/ 2) ), 1, 2,... n z az k z kl l a hl zn n n λ λ π π ⇒ = = = = =− ∈− + = 其中 有根 2 TaT ′ + =⇒ λn 0 2 2 2 2 ( ) , ( 1,2, ) n n a z t a t nn n l T t Ce Ce n λ − − = = = L
上游充通大兽 SHANGHAI JIAO TONG UNIVERSITY