12.3角的平分线的性质
●● 学习目标 L在探究作角平分线的方法和角平分线性质的过程中,掌握 角平分线的作法和角平分线的性质 2提高综合运用三角形全等的有关知识解决问题的能力;掌 握简单的角平分线在生产、生活中的应用 ) 0●0000 0000000
●● 新课是入 不利用工具,请你将一张用纸片做的角分成两个相 等的角你有什么办法?对折 A 再打开纸片,看看折痕与这个角有 何关系? 0 0●0000 0000000
●● 知识讲解 如果前面活动中的纸片换成木板、钢板等没法折的 角,又该怎么办呢? 观察下面简易的平分角的仪器,其中AB=AD, BCDC将点A放在角的顶点,AB和AD沿着角的两边放下, 沿AC画一条射线A配,AE就是∠DAB的平分线你能说明它 的道理吗? 0●0000 0000000
●● 证明 在ACD和ACB中 ADFAB(已知) CBO(已知) CACA(公共边) ∴ AACDE AACB(SS」 ∠CAD=∠CAB(全等三角形的对应角相等) AC平分∠DAB(角平分线的定义) 0●0000 0000000
●● 0 图 根据角平分仪的制作原理怎样作 个角的平分线?(不用角平分仪或量角 器) 0●00000 0000000
●● 尺规作角的平分线 画法: 1以0为圆心,适当长为半径作弧,交0A于M,交于N 2分别以M,N为圆心.大于MN的长 为半径作弧两弧在∠AOB的内部交于C. 3作射线0C. 射线0C即为所求 0 N B 0●0000 0000000
●● 为什么0C是∠AOB的平分线? 证明连接MCNC由作法知 在2OMC和ONC中 OM=ON MCENO 0C=0C 0 △MC≌ONC(SS9 ∠AOC=∠B0C, 即0C是AOB的平分线 0●0000 0000000
●● 探究活动 将∠A0B对折,再折出一个直角三角形(使第一条折 痕为斜边),然后展开,观察两次折叠形成的三条折痕, 你能得出什么结论? C -B 猜想:角的平分线上的点到角的两边的距离相等 0●0000 0000000
●● 验证)已知:C∠10,点在C上,PD⊥0于D PE⊥O于E,求证:PD=PE 证职:0C平分∠A0B,P是0C上一点(已知), ∠D0P=∠BOP(角平分线定义), PD⊥OAPE⊥OB(已知) ∠0DP=∠0EP=90°(垂直的定义), 在2OPD和AOPE中 ∠DDP=∠B0P(已证), C0Dp=∠OEP(已证), 0P=OP(已知) AOPDEAOPE(AAS) PD=PE(全等三角形对应边相等) 0●0000 0000000