免费下载网址htt:jiaoxuesu.ys1.68.com/ 第二十二章二次函数 1.(安徽)若二次函数y=x2+bx+5配方后为y=(x-2)2+k则b、k的值分别为… (B)0.1 (C)-4.5 (D)—4.1 【答案】C 2.(甘肃兰州)二次函数y=-3x-6X+5的图象的顶点坐标是 B.(1,8 C.(-1,2) 【答案】A 3.(甘肃兰州)抛物线y=x+bx+C图象向右平移2个单位再向下平移3个单位,所得图象的解析式为 y=x-2x-3,则b、c的值为( B.b=2,c=0 C.b=-2,c=-1 【答案】B (计兰州)轴物线=03++图象如图所示,则一次面数y=一-4c+b与反比例数y=2 在同一坐标系内的图象大致为( 第15题图 【答案】D 5.(江苏盐城)给出下列四个函数:①y=-x:②y=x;③y=-;④y=x2(x0时,y随x的增大而增大的是() 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 第二十二章 二次函数 1.(安徽) 若二次函数 5 2 y = x + bx + 配方后为 y = x − + k 2 ( 2) 则 b 、k 的值分别为………………( ) (A)0.5 (B)0.1 (C)—4.5 (D)—4.1 【答案】C 2.(甘肃兰州) 二次函数 2 y x x = − − + 3 6 5 的图象的顶点坐标是 ( ) A.(-1,8) B.(1,8) C.(-1,2) D.(1,-4) 【答案】A 3.(甘肃兰州) 抛物线 y = x + bx + c 2 图象向右平移 2 个单位再向下平移 3 个单位,所得图象的解析式为 2 3 2 y = x − x − ,则 b、c 的值为 ( ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 【答案】B 4.(甘肃兰州)抛物线 y = ax + bx + c 2 图象如图所示,则一次函数 2 y = −bx − 4ac +b 与反比例函数 abc y x + + = 在同一坐标系内的图象大致为 ( ) 第 15 题图 【答案】D 5.(江苏盐城)给出下列四个函数:① y = −x ;② y = x ;③ x y 1 = ;④ 2 y = x ( x 0 )时,y 随 x 的增大而减 小的函数有 ( ) A.1 个 B.2 个 C.3 个 D.4 个 【答案】C 6.(浙江金华) 已知抛物线 y = ax + bx + c 2 的开口向下,顶点坐标为(2,-3) ,那么该抛物线有 ( ) A. 最小值 -3 B. 最大值-3 C. 最小值 2 D. 最大值 2 【答案】B 7.(山东济南)在平面直角坐标系中,抛物线 2 y x = −1 与 x 轴的交点的个数是( ) A.3 B.2 C.1 D.0 【答案】B 8.( 浙江衢州)下列四个函数图象中,当 x>0 时,y 随 x 的增大而增大的是( ) x x x x x
免费下载网址htt:jiaoxuesu.ys1.68.com/ 【答案】C 9.(福建三明)抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是() A.k≥--B.k≥--且k≠01C.k>--D.k>一-且k≠0 【答案】B 10.(河北)如图5,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其 中点A的坐标为(0,3),则点B的坐标为() 2 图5 A.(2,3) B.(3,2)C.(3,3) D.(4,3) 【答案】D 11.(山东莱芜)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的 图象不经过 A.第一象限B.第二象限 C.第三象限D.第四象限 【答案】D 12.(贵州)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是() 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 【答案】C 9.(福建三明)抛物线 7 7 2 y = kx − x − 的图象和 x 轴有交点,则 k 的取值范围是( ) A. 4 7 k − B. 4 7 k − 且 k 0 C. 4 7 k − D. 4 7 k − 且 k 0 【答案】B 10.(河北)如图 5,已知抛物线 y = x + bx + c 2 的对称轴为 x = 2 ,点 A,B 均在抛物线上,且 AB 与 x 轴平行,其 中点 A 的坐标为(0,3),则点 B 的坐标为 ( ) A.(2,3) B.(3,2) C.(3,3) D.(4,3) 【答案】D 11.(山东莱芜)二次函数 y = ax +bx + c 2 的图象如图所示,则一次函数 y = bx + a 的 图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】D 12.(贵州)函数 2 y ax b y ax bx c = + = + + 和 在同一直角坐标系内的图象大致是( ) x y O O x y A 图 5 x = 2 B O y 1 x 1 A. O y 1 x 1 C. O y 1 x 1 D. O y 1 x 1 B.
免费下载网址htt:jiaoxuesu.ys1.68.com/ 【答案】C. 13.(贵州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-3x +5,则( A. F3, c7 B.b=6,c3 C.b-9,c=-5 D.b-9,c=21 【答案】A. 14.(湖北荆州)若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2-2x+1) 可以由E(x,x2)怎样平移得到? A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位 【答案】D 15.(北京)将二次函数y=x2-2x+3,化为y=(x-b)2+k的形式,结果为() A.=(x+1)2+4B.y=(x-1)2+4C.y=(x+1)2+2D.y=(x-1)2+2 【答案】D 16.(山东泰安)下列函数:①y=-3x:②y=2x-1:③y=-(x<0):④y=-x2+2x+3,其中y的值随x 值增大而增大的函数有( A、4个 B、3个 C、2个 D、1个 【答案】C 17.(江苏徐州)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x轴交于两点,且 此两点的距离为1个单位,则平移方式为 A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位 【答案】B 甘肃)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax+bx+c(a≠0).若此炮弹 在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是() A.第8秒 B.第10秒 C.第12秒 D.第15秒 【答案】B 、填空题 1.(湖南株洲)已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”下 图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 【答案】C. 13.(贵州)把抛物线 y=x 2 +bx+c 的图象向右平移 3 个单位,再向下平移 2 个单位,所得图象的解析式为 y=x 2 -3x +5,则( ) A.b=3,c=7 B.b=6,c=3 C.b= − 9,c=− 5 D.b=− 9,c=21 【答案】A. 14.(湖北荆州)若把函数 y=x 的图象用 E(x,x)记,函数 y=2x+1 的图象用 E(x,2x+1)记,……则 E(x, 2 1 2 x − x + ) 可以由 E(x, 2 x )怎样平移得到? A.向上平移1个单位 B.向下平移1个单位 C.向左平移1个单位 D.向右平移1个单位 【答案】D 15.(北京) 将二次函数 y=x 2-2x+3,化为 y=(x-h) 2+k 的形式,结果为( ) A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D. y=(x-1)2+2 【答案】D 16.(山东泰安)下列函数:① y x = −3 ;② y x = − 2 1 ;③ ( ) 1 y x 0 x = − ;④ 2 y x x = − + + 2 3 ,其中 y 的值随 x 值增大而增大的函数有( ) A、4 个 B、3 个 C、2 个 D、1 个 【答案】C 17.(江苏徐州)平面直角坐标系中,若平移二次函数 y=(x-2009)(x-2010)+4 的图象,使其与 x 轴交于两点,且 此两点的距离为 1 个单位,则平移方式为 A.向上平移 4 个单位 B.向下平移 4 个单位 C.向左平移 4 个单位 D.向右平移 4 个单位 【答案】B 18.(甘肃)向空中发射一枚炮弹,经 x 秒后的高度为 y 米,且时间与高度的关系为 y=ax 2 +bx+c(a≠0).若此炮弹 在第 7 秒与第 14 秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A.第 8 秒 B.第 10 秒 C.第 12 秒 D.第 15 秒 【答案】B 二、填空题 1.(湖南株洲)已知二次函数 ( ) ( ) 2 y x a a = − + − 2 1 ( a 为常数),当 a 取不同的值时,其图象构成一个“抛物线系”.下 图分别是当 a =−1, a = 0 , a =1, a = 2 时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 y =
免费下载网址htt:jiaoxuesu.ys1.68.com/ a=2 【答案】-x-1 2.(浙江宁波)如图,已知⊙P的半径为2,圆心P在抛物线y22-1上运动,当⊙P与x轴相切时,圆心P的 坐标为 【答案】(√6,2)或(-√6,2)(对一个得2分) 解答题 1.(湖北省咸宁)已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0) (1)证明4c=3b2; (2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值 【答案】(1)证明:依题意,m,-3m是一元二次方程x2+bx-c=0的两根 根据一元二次方程根与系数的关系,得m+(-3m)=-b,m×(-3m)=-c ∴b=2m,c=3m 4c=3b2=12 (2)解:依题 =1,∴b=-2 由(1)得c32_3 ∴二次函数的最小值为-4 2.(云南楚雄)已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0).与y轴相交于点C(0, 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 【答案】 1 1 2 x − 2.(浙江宁波) 如图,已知⊙P 的半径为 2,圆心 P 在抛物线 1 2 1 2 y x = − 上运动,当⊙P 与 x 轴相切时,圆心 P 的 坐标为 . 【答案】 ( 6,2) 或 (− 6,2) (对一个得 2 分) 三、解答题 1.(湖北省咸宁)已知二次函数 2 y x bx c = + − 的图象与 x 轴两交点的坐标分别为( m ,0),(−3m ,0)( m 0 ). (1)证明 2 4 3 c b = ; (2)若该函数图象的对称轴为直线 x =1 ,试求二次函数的最小值. 【答案】(1)证明:依题意, m , −3m 是一元二次方程 2 x bx c + − = 0 的两根. 根据一元二次方程根与系数的关系,得 m m b + − = − ( 3 ) , m m c − = − ( 3 ) . ∴ b m = 2 , 2 c m = 3 . ∴ 2 2 4 3 12 c b m = = . (2)解:依题意, 1 2 b − = ,∴ b =−2. 由(1)得 3 3 2 2 ( 2) 3 4 4 c b = = − = . ∴ 2 2 y x x x = − − = − − 2 3 ( 1) 4 . ∴二次函数的最小值为 −4. 2.(云南楚雄)已知:如图,抛物线 2 y ax bx c = + + 与 x 轴相交于两点 A(1,0),B(3,0).与 y 轴相交于点 C(0, 3).
免费下载网址htt:jiaoxuesu.ys1.68.com/ (1)求抛物线的函数关系式 (2)若点D(,m)是抛物线y=ax2+bx+c上一点,请求出m的值,并求出此时△ABD的面积 b+c=0 【答案】解:(1)由题意可知{9a+3b+c=0解得 b=-4,所 以抛物线的函数关系式为y=x2-4x+3 (2)把D(,m)代人函数解析式y=x-4x+3中,得m=()-1+344 所以S△BD-2 3.(黑龙江哈尔滨)体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD 设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米) (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围); (2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长。 第24题图) 【答案】解:(1)根据题意D~30-2x 15-x,S=x(15-x)=-x+15x (2)当S=50时,-x2+15x=50,整理得x2-15x+50=0 解得x1=5,x2=10 当AB=5时,AD=10:当AB=10时,AD=5, ∵AB<AD∴AB=5 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com (1)求抛物线的函数关系式; (2)若点 D( 7 , 2 m )是抛物线 2 y ax bx c = + + 上一点,请求出 m 的值,并求出此时△ABD 的面积. 1 4 3 a b c = = − = 【答案】解:(1)由题意可知 ,所 0 9 3 0 3 abc a b c c + + = + + = = 解得 以抛物线的函数关系式为 2 y x x = − + 4 3. (2)把 D( 7 , 2 m )代人函数解析式 2 y x x = − + 4 3 中,得 7 7 5 2 ( ) 4 3 2 2 4 m = − + = . 所以 1 5 5 (3 1) 2 4 4 ABD S = − = . 3.(黑龙江哈尔滨)体育课上,老师用绳子围成一个周长为 30 米的游戏场地,围成的场地是如图所示的矩形 ABCD。 设边 AB 的长为 x(单位:米),矩形 ABCD 的面积为 S(单位:平方米) (1)求 S 与 x 之间的函数关系式(不要求写出自变量 x 的取值范围); (2)若矩形 ABCD 的面积为 50 平方米,且 AB<AD,请求出此时 AB 的长。 【答案】解:(1)根据题意 x x AD = − − = 15 2 30 2 , S x(15 x) x 15x 2 = − = − + (2)当 S=50 时, 15 50 2 − x + x = , 整理得 15 50 0 2 x − x + = 解得 x1 = 5, x2 =10 当 AB=5 时,AD=10;当 AB=10 时,AD=5, AB AD ∴AB=5 1 2 3 4 1 2 3 4 − 2 −1 O −1 − 2 x y
免费下载网址htr:/ JIaoxue5u.ys168com/ 答:当矩形ABCD的面积为50平方米且AB<AD时,AB的长为5米 4.(山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销 售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500 (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润 (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元, 那么他每月的成本最少需要多少元?(成本=进价×销售量) 【答案】 解:(1)由题意,得:W=(x-20)·y (x-20)·(-10x+500) 10x2+700x-10000 b 答:当销售单价定为35元时,每月可获得最大利润 3分 (2)由题意,得:-10x2+700x-10000=2000 解这个方程得:x=30,=40. 答:李明想要每月获得2000元的利润,销售单价应定为30元或40元 (3)法一:∵a=-10<0 法二::a=-10<0, ∴抛物线开口向下 1∴抛物线开口向下 ∴当30≤x≤40时,W≥2000 ∴当30≤x≤40时,w≥2000 x≤32, ∵x≤32 ∴30≤x≤32时,w≥2000 ∴当30≤x≤32时,旷≥2000. 10x+500,k=-10<0 设成本为P(元),由题意,得 1∴y随x的增大而减小 P=20(-10x+500) 1∴当x=32时,y小=180. -200x+10000 ∵当进价一定时,销售量越小 ∵k=-200<0 成本越小 P随x的增大而减小. ∴20×180=3600(元) ∴当x=32时,P最=3600 答:想要每月获得的利润不低于2000元,每月的成本最少为3600 10分 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 答:当矩形 ABCD 的面积为 50 平方米且 AB AD 时,AB 的长为 5 米 4.(山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件 20 元的护眼台灯.销 售过程中发现,每月销售量 y(件)与销售单价 x(元)之间的关系可近似的看作一次函数: y x = − + 10 500 . (1)设李明每月获得利润为 w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得 2000 元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于 32 元,如果李明想要每月获得的利润不低于 2000 元, 那么他每月的成本最少需要多少元?(成本=进价×销售量) 【答案】 解:(1)由题意,得:w = (x-20)·y =(x-20)·( − + 10 500 x ) 2 = − + − 10 700 10000 x x 35 2 b x a = − = . 答:当销售单价定为 35 元时,每月可获得最大利润. 3 分 (2)由题意,得: 2 − + − = 10 700 10000 2000 x x 解这个方程得:x1 = 30,x2 = 40. 答:李明想要每月获得 2000 元的利润,销售单价应定为 30 元或 40 元. 6 分 (3)法一:∵ a = − 10 , ∴抛物线开口向下. ∴当 30≤x≤40 时,w≥2000. ∵x≤32, ∴当 30≤x≤32 时,w≥2000. 设成本为 P(元),由题意,得: P x = − + 20( 10 500) = − + 200 10000 x ∵ k = − 200 , ∴P 随 x 的增大而减小. ∴当 x = 32 时,P 最小=3600. 答:想要每月获得的利润不低于 2000 元,每月的成本最少为 3600 元. 10 分 法二:∵ a = − 10 , ∴抛物线开口向下. ∴当 30≤x≤40 时,w≥2000. ∵x≤32, ∴30≤x≤32 时,w≥2000. ∵ y x = − + 10 500 ,k = − 10 0 , ∴y 随 x 的增大而减小. ∴当 x = 32 时,y 最小=180. ∵当进价一定时,销售量越小, 成本越小, ∴ 20 180 3600 = (元)
免费下载网址htt:jiaoxuesu.ys1.68.com/ 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址 jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com