2017年山东省潍坊市中考数学试卷 、选择题(共12小题,每小题3分,满分36分在每小题给出的四个选项中, 只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选 或选出的答案超过一个均记0分) 1.(3分)下列算式,正确的是( A.a3×a2=a6B.a3÷a=a3C.a2+a2 2)2--4 2.(3分)如图所示的几何体,其俯视图是() A 3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能 源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000 亿用科学记数法可表示为() A.1×103B.1000×108C.1×101D.1×101 4.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方 子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4 枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是() 2,1)B.(-1,1)C.(1,-2) 5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置 介于()之间 □面口□4328ff
2017 年山东省潍坊市中考数学试卷 一、选择题(共 12 小题,每小题 3 分,满分 36 分.在每小题给出的四个选项中, 只有一项是正确的,请把正确的选项选出来,每小题选对得 3 分,选错、不选 或选出的答案超过一个均记 0 分) 1.(3 分)下列算式,正确的是( ) A.a 3×a 2=a6 B.a 3÷a=a3C.a 2+a 2=a4D.(a 2)2=a4 2.(3 分)如图所示的几何体,其俯视图是( ) A. B. C. D. 3.(3 分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能 源.据报道,仅我国可燃冰预测远景资源量就超过了 1000 亿吨油当量.将 1000 亿用科学记数法可表示为( ) A.1×103 B.1000×108 C.1×1011 D.1×1014 4.(3 分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方 子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第 4 枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ) A.(﹣2,1) B.(﹣1,1) C.(1,﹣2) D.(﹣1,﹣2) 5.(3 分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置 介于( )之间.
A.B与CB.C与DC.E与FD.A与B 6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠B满足() C A.∠a+∠β=180°B.∠β-∠α=90°C.∠β=3∠αD.∠a+∠B=90° 7.(3分)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次 甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛, 从平均数与方差两个因素分析,应选( 甲 乙 平均数 方差 10个数 12345678910次数 A.甲B.乙C.丙D.丁 8.(3分)一次函数y=ax+b与反比例函数y=ab,其中ab<0,a、b为常数 它们在同一坐标系中的图象可以是()
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 6.(3 分)如图,∠BCD=90°,AB∥DE,则∠α 与∠β 满足( ) A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90° 7.(3 分)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了 10 次, 甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛, 从平均数与方差两个因素分析,应选( ) 甲 乙 平均数 9 8 方差 1 1 A.甲 B.乙 C.丙 D.丁 8.(3 分)一次函数 y=ax+b 与反比例函数 y= ,其中 ab<0,a、b 为常数, 它们在同一坐标系中的图象可以是( ) A. B. C . D.
9.(3分)若代数式x=2有意义,则实数x的取值范围是() A.x≥1B.X≥2C.x>1D.X>2 10.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G, AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为() A.50°B.60°C.80°D.90° 11.(3分)定义[x]表示不超过实数x的最大整数,如[18]=1,[-1.4]=-2, 3]=-3.函数y=[X]的图象如图所示,则方程[x=×2的解为() A.0或√2B.0或2c.1或√2D.√2或-√2 12.(3分)点A、C为半径是3的圆周上两点,点B为AC的中点,以线段BA BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为 A.√5或2√2B.√5或2√3C.√6或2√2D.√6或 填空题(共6小题,每小题3分,满分18分。只要求填写最后结果,每小 题全对得3分) 13.(3分)计算:(1-1)÷22
9.(3 分)若代数式 有意义,则实数 x 的取值范围是( ) A.x≥1 B.x≥2C.x>1D.x>2 10.(3 分)如图,四边形 ABCD 为⊙O 的内接四边形.延长 AB 与 DC 相交于点 G, AO⊥CD,垂足为 E,连接 BD,∠GBC=50°,则∠DBC 的度数为( ) A.50° B.60° C.80° D.90° 11.(3 分)定义[x]表示不超过实数 x 的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣ 3]=﹣3.函数 y=[x]的图象如图所示,则方程[x]= x 2 的解为( ) A.0 或 B.0 或 2 C.1 或 D. 或﹣ 12.(3 分)点 A、C 为半径是 3 的圆周上两点,点 B 为 的中点,以线段 BA、 BC 为邻边作菱形 ABCD,顶点 D 恰在该圆直径的三等分点上,则该菱形的边长为 ( ) A. 或 2 B. 或 2 C. 或 2 D. 或 2 二、填空题(共 6 小题,每小题 3 分,满分 18 分。只要求填写最后结果,每小 题全对得 3 分) 13.(3 分)计算:(1﹣ )÷ = .
14.(3分)因式分解:x2-2x+(x-2) 15.(3分)如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD AB=3AE,点F为BC边上一点,添加一个条件 ,可以使得△FDB与△ ADE相似.(只需写出一个) 16.(3分)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围 是 17.(3分)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边 三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成 第3个图由3个正六边形、16个正方形和14个等边三角形组成:…按照此规律, 第n个图中正方形和等边三角形的个数之和为 个. 18.(3分)如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落 在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在BC边上, 记为D,折痕为CG,BD=2,BE=1BC.则矩形纸片ABCD的面积为 三、解答题(共7小题,满分66分解答要写出必要的文字说明、证明过程或演 算步骤) 19.(8分)本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同 学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级, 学校绘制了如下不完整的统计图
14.(3 分)因式分解:x 2﹣2x+(x﹣2)= . 15.(3 分)如图,在△ABC 中,AB≠AC.D、E 分别为边 AB、AC 上的点.AC=3AD, AB=3AE,点 F 为 BC 边上一点,添加一个条件: ,可以使得△FDB 与△ ADE 相似.(只需写出一个) 16.(3 分)若关于 x 的一元二次方程 kx2﹣2x+1=0 有实数根,则 k 的取值范围 是 . 17.(3 分)如图,自左至右,第 1 个图由 1 个正六边形、6 个正方形和 6 个等边 三角形组成;第 2 个图由 2 个正六边形、11 个正方形和 10 个等边三角形组成; 第 3 个图由 3 个正六边形、16 个正方形和 14 个等边三角形组成;…按照此规律, 第 n 个图中正方形和等边三角形的个数之和为 个. 18.(3 分)如图,将一张矩形纸片 ABCD 的边 BC 斜着向 AD 边对折,使点 B 落 在 AD 边上,记为 B′,折痕为 CE,再将 CD 边斜向下对折,使点 D 落在 B′C 边上, 记为 D′,折痕为 CG,B′D′=2,BE= BC.则矩形纸片 ABCD 的面积为 . 三、解答题(共 7 小题,满分 66 分.解答要写出必要的文字说明、证明过程或演 算步骤) 19.(8 分)本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同 学进行了 1000 米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级, 学校绘制了如下不完整的统计图.
1000米跑成绩条形统计图 1000米跑成绩扇形统计图 人数(名) 不合格5% 合格 优秀 %6 良好 优秀良好合格不合格成绩(等 (1)根据给出的信息,补全两幅统计图 (2)该校九年级有600名男生,请估计成绩未达到良好有多少名? (3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000 米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰 好分在同一组的概率是多少? 20.(8分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层 为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地15米,在 A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14 米.求居民楼的高度(精确到0.1米,参考数据:√3≈1.73) 60°△A'301B Sm 21.(8分)某蔬菜加工公司先后两批次收购蒜薹(tai)共100吨.第一批蒜薹 价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔 共用去16万元 (1)求两批次购进蒜薹各多少吨? (2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润 400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为 获得最大利润,精加工数量应为多少吨?最大利润是多少? 22.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为BC的中点,作 DE⊥AC,交AB的延长线于点F,连接DA
(1)根据给出的信息,补全两幅统计图; (2)该校九年级有 600 名男生,请估计成绩未达到良好有多少名? (3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会 1000 米比赛.预赛分别为 A、B、C 三组进行,选手由抽签确定分组.甲、乙两人恰 好分在同一组的概率是多少? 20.(8 分)如图,某数学兴趣小组要测量一栋五层居民楼 CD 的高度.该楼底层 为车库,高 2.5 米;上面五层居住,每层高度相等.测角仪支架离地 1.5 米,在 A 处测得五楼顶部点 D 的仰角为 60°,在 B 处测得四楼顶点 E 的仰角为 30°,AB=14 米.求居民楼的高度(精确到 0.1 米,参考数据: ≈1.73) 21.(8 分)某蔬菜加工公司先后两批次收购蒜薹(tái)共 100 吨.第一批蒜薹 价格为 4000 元/吨;因蒜薹大量上市,第二批价格跌至 1000 元/吨.这两批蒜苔 共用去 16 万元. (1)求两批次购进蒜薹各多少吨? (2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润 400 元,精加工每吨利润 1000 元.要求精加工数量不多于粗加工数量的三倍.为 获得最大利润,精加工数量应为多少吨?最大利润是多少? 22.(8 分)如图,AB 为半圆 O 的直径,AC 是⊙O 的一条弦,D 为 的中点,作 DE⊥AC,交 AB 的延长线于点 F,连接 DA.
(1)求证:EF为半圆O的切线; (2)若DA=DF=63,求阴影区域的面积.(结果保留根号和π) 23.(9分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计) (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体 底面面积为12dm2时,裁掉的正方形边长多大? (2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处 理,侧面每平方分米的费用为05元,底面每平方分米的费用为2元,裁掉的正 方形边长多大时,总费用最低,最低为多少? 24.(12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB, EC=2√3 (1)如图1,将△DEC沿射线方向平移,得到△DEC,边DE与AC的交点为 边CD与∠ACC的角平分线交于点N,当CC多大时,四边形MCND’为菱形?并 说明理由 (2)如图2,将△DEC绕点C旋转∠a(0°<α<360°),得到△D'EC,连接AD'、 BE′.边DE的中点为P ①在旋转过程中,AD和BE有怎样的数量关系?并说明理由; ②连接AP,当AP最大时,求AD的值.(结果保留根号)
(1)求证:EF 为半圆 O 的切线; (2)若 DA=DF=6 ,求阴影区域的面积.(结果保留根号和 π) 23.(9 分)工人师傅用一块长为 10dm,宽为 6dm 的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计) (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体 底面面积为 12dm2 时,裁掉的正方形边长多大? (2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处 理,侧面每平方分米的费用为 0.5 元,底面每平方分米的费用为 2 元,裁掉的正 方形边长多大时,总费用最低,最低为多少? 24.(12 分)边长为 6 的等边△ABC 中,点 D、E 分别在 AC、BC 边上,DE∥AB, EC=2 (1)如图 1,将△DEC 沿射线方向平移,得到△D′E′C′,边 D′E′与 AC 的交点为 M, 边 C′D′与∠ACC′的角平分线交于点 N,当 CC′多大时,四边形 MCND′为菱形?并 说明理由. (2)如图 2,将△DEC 绕点 C 旋转∠α(0°<α<360°),得到△D′E′C,连接 AD′、 BE′.边 D′E′的中点为 P. ①在旋转过程中,AD′和 BE′有怎样的数量关系?并说明理由; ②连接 AP,当 AP 最大时,求 AD′的值.(结果保留根号)
图1 25.(13分)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3) B(-1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线将平 行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线 上方抛物线上一动点,设点P的横坐标为t (1)求抛物线的解析式; (2)当t何值时,△PE的面积最大?并求最大值的立方根; (3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在, 说明理由 备用图
25.(13 分)如图 1,抛物线 y=ax2+bx+c 经过平行四边形 ABCD 的顶点 A(0,3)、 B(﹣1,0)、D(2,3),抛物线与 x 轴的另一交点为 E.经过点 E 的直线 l 将平 行四边形 ABCD 分割为面积相等两部分,与抛物线交于另一点 F.点 P 在直线 l 上方抛物线上一动点,设点 P 的横坐标为 t (1)求抛物线的解析式; (2)当 t 何值时,△PFE 的面积最大?并求最大值的立方根; (3)是否存在点 P 使△PAE 为直角三角形?若存在,求出 t 的值;若不存在, 说明理由.
2017年山东省潍坊市中考数学试卷 参考答案与试题解析 、选择题(共12小题,每小题3分,满分36分在每小题给出的四个选项中 只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选 或选出的答案超过一个均记0分) 1.(3分)(2017·潍坊)下列算式,正确的是() A.a3×a2=a6B.a3÷a=a3℃C.a2+a2=a4D.(a2)2=a4 【分析】根据整式运算法则即可求出答案. 【解答】解:(A)原式=a5,故A错误; (B)原式=a2,故B错误 (C)原式=2a2,故C错误 故选(D) 【点评】本题考査整式的运算,解题的关键是熟练运用整式的运算法则,本题属 于基础题型 2.(3分)(2017潍坊)如图所示的几何体,其俯视图是( 【分析】根据从上边看得到的图形是俯视图,可得答案 【解答】解:从上边看是一个同心圆,內圆是虚线 故选:D 【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,注意 看得到的线用虚线
2017 年山东省潍坊市中考数学试卷 参考答案与试题解析 一、选择题(共 12 小题,每小题 3 分,满分 36 分.在每小题给出的四个选项中, 只有一项是正确的,请把正确的选项选出来,每小题选对得 3 分,选错、不选 或选出的答案超过一个均记 0 分) 1.(3 分)(2017•潍坊)下列算式,正确的是( ) A.a 3×a 2=a6 B.a 3÷a=a3C.a 2+a 2=a4D.(a 2)2=a4 【分析】根据整式运算法则即可求出答案. 【解答】解:(A)原式=a5,故 A 错误; (B)原式=a2,故 B 错误; (C)原式=2a2,故 C 错误; 故选(D) 【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属 于基础题型. 2.(3 分)(2017•潍坊)如图所示的几何体,其俯视图是( ) A. B. C. D. 【分析】根据从上边看得到的图形是俯视图,可得答案. 【解答】解:从上边看是一个同心圆,內圆是虚线, 故选:D. 【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,注意 看得到的线用虚线.
3.(3分)(2017·潍坊)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储 量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油 当量.将1000亿用科学记数法可表示为() A.1×103B.1000×108C.1×1011D.1×1014 【分析】科学记数法的表示形式为a×10的形式,其中1≤|a1时,n是正数;当原数的绝对值<1时,n 是负数 【解答】解:将1000亿用科学记数法表示为:1×101 故选:C 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的 形式,其中1≤|a<10,n为整数,表示时关键要正确确定a的值以及n的值 4.(3分)(2017·潍坊)小莹和小博士下棋,小莹执圆子,小博士执方子.如图, 棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小 莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是 A.(-2,1)B.(-1,1)C.(1,-2)D.(-1,-2) 【分析】首先确定ⅹ轴、y轴的位置,然后根据轴对称图形的定义判断 【解答】解:棋盘中心方子的位置用(-1,0)表示,则这点所在的横线是ⅹ轴, 右下角方子的位置用(0,-1),则这点所在的纵线是y轴,则当放的位置是( 1,1)时构成轴对称图形 故选B
3.(3 分)(2017•潍坊)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储 量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了 1000 亿吨油 当量.将 1000 亿用科学记数法可表示为( ) A.1×103 B.1000×108 C.1×1011 D.1×1014 【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确 定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点 移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【解答】解:将 1000 亿用科学记数法表示为:1×1011. 故选:C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的 形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 4.(3 分)(2017•潍坊)小莹和小博士下棋,小莹执圆子,小博士执方子.如图, 棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小 莹将第 4 枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是 ( ) A.(﹣2,1) B.(﹣1,1) C.(1,﹣2) D.(﹣1,﹣2) 【分析】首先确定 x 轴、y 轴的位置,然后根据轴对称图形的定义判断. 【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是 x 轴, 右下角方子的位置用(0,﹣1),则这点所在的纵线是 y 轴,则当放的位置是(﹣ 1,1)时构成轴对称图形. 故选 B.
【点评】本题考査了轴对称图形和坐标位置的确定,正确确定ⅹ轴、y轴的位置 是关键 5.(3分)(2017·潍坊)用教材中的计算器依次按键如下,显示的结果在数轴上 对应点的位置介于()之间 A.B与CB.C与DC.E与FD.A与B 【分析】此题实际是求-√2的值 【解答】解:在计算器上依次按键转化为算式为-√2=; 计算可得结果介于-2与-1之间 故选A 【点评】本题主要考查了利用计算器计算结果,要求同学们能熟练应用计算器, 熟悉计算器的各个按键的功能 6.(3分)(2017·潍坊)如图,∠BCD=90°,AB∥DE,则∠a与∠β满足() C A.∠a+∠β=180°B.∠β-∠α=90°C.∠β=3∠aD.∠a+∠B=90° 【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠a,∠2=180°-∠B,于 是得到结论 【解答】解:过C作CF∥AB, AB∥DE, ∴AB∥CF∥DE
【点评】本题考查了轴对称图形和坐标位置的确定,正确确定 x 轴、y 轴的位置 是关键. 5.(3 分)(2017•潍坊)用教材中的计算器依次按键如下,显示的结果在数轴上 对应点的位置介于( )之间. A.B 与 C B.C 与 D C.E 与 F D.A 与 B 【分析】此题实际是求﹣ 的值. 【解答】解:在计算器上依次按键转化为算式为﹣ =; 计算可得结果介于﹣2 与﹣1 之间. 故选 A. 【点评】本题主要考查了利用计算器计算结果,要求同学们能熟练应用计算器, 熟悉计算器的各个按键的功能. 6.(3 分)(2017•潍坊)如图,∠BCD=90°,AB∥DE,则∠α 与∠β 满足( ) A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90° 【分析】过 C 作 CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于 是得到结论. 【解答】解:过 C 作 CF∥AB, ∵AB∥DE, ∴AB∥CF∥DE