第四章微商与微分 §1微商概念及其计算 1.求抛物线y=x2在A(1,1)点和B(-2,4)点的切线方程和法线方程. 2.若S g2,求 (1)在t=1,t=1+△t之间的平均速度(设△t=1,0.,0.01); (2)在t=1的瞬时速度 3.试确定曲线y=lx在哪些点的切线平行于下列直线: x2,x>3 4.设f(x) x+b,x<3, 试确定a,b的值,使f(x)在x=3处可导 5.求下列曲线在指定点P的切线方程和法线方程 子,P P(0,1) 6.求下列函数的导函数 2)f(x) x<0;
第四章 微商与微分 §1 微商概念及其计算 1.求抛物线y = x 2在A(1, 1)点和B(−2, 4)点的切线方程和法线方程. 2.若S = vt − 1 2 gt2,求 (1)在t = 1, t = 1 + ∆t之间的平均速度(设∆t = 1, 0.1, 0.01); (2)在t = 1的瞬时速度. 3.试确定曲线y = ln x在哪些点的切线平行于下列直线: (1)y = x − 1; (2)y = 2x − 3. 4.设f(x) = x 2 , x ≥ 3 ax + b, x < 3, 试确定a, b的值,使f(x)在x = 3处可导. 5.求下列曲线在指定点P的切线方程和法线方程: (1)y = x 2 4 , P(2, 1); (2)y = cos x, P(0, 1). 6.求下列函数的导函数. (1)f(x) = |x| 3 ; (2)f(x) = x + 1, x ≥ 0, 1, x < 0; 1
7.设函数f(x) rn sin1,x≠0 (m为正整数) 试问:(1)m等于何值时,f(a)在x=0连续; (2)m等于何值时,f(x)在x=0可导 (3)m等于何值时,f(x)在x=0连续 设g(0)=g(0 f(a) g(x)im1,x≠ 0, 0. 求f(0) 9.证明:若f(xo)存在,则 f(xo+△x)-f(xo-△x) △r→0 f(ao) 10.设f(x)是定义在(-∞,+∞)上的函数,且对任意x1,x2∈(-∞,+∞), 若f(0)=1,证明任意x∈(-∞,+∞),有f(x)=f(x) 11.设f(x)是偶函数,且f(0)存在,证明:f(0)=0 12.设f(x)是奇函数,且f(xo)=3,求f(-xo). 13.用定义证明:可导的偶函数的导函数是奇函数,可导的奇函数 的导函数是偶函数 14.求下列函数的导函数: (1)y=x sinc (3)y=rtan c-7r+6;
7.设函数f(x) = x m sin 1 x , x 6= 0 0, x = 0 (m为正整数). 试问:(1)m等于何值时,f(x)在x = 0连续; (2)m等于何值时,f(x)在x = 0可导; (3)m等于何值时,f 0 (x)在x = 0连续. 8.设g(0) = g 0 (0) = 0,f(x) = g(x) sin 1 x , x 6= 0, 0, x = 0. 求f 0 (0). 9.证明:若f 0 (x0)存在,则 lim ∆x→0 f(x0 + ∆x) − f(x0 − ∆x) 2∆x = f 0 (x0) 10.设f(x)是定义在(−∞, +∞)上的函数,且对任意x1, x2 ∈ (−∞, +∞), 有 f(x1 + x2) = f(x1)f(x2). 若f 0 (0) = 1,证明任意x ∈ (−∞, +∞),有f 0 (x) = f(x). 11.设f(x)是偶函数,且f 0 (0)存在,证明:f 0 (0) = 0. 12.设f(x)是奇函数,且f 0 (x0) = 3,求f 0 (−x0). 13.用定义证明:可导的偶函数的导函数是奇函数,可导的奇函数 的导函数是偶函数. 14.求下列函数的导函数: (1)y = x 2 sin x; (2)y = x cos x + 3x 2; (3)y = x tan x − 7x + 6; 2
(4)y=e sin r-7 x+5 x2 (5)y=4√x+1-2r3 6)y=3x+ (8)y=1+x+xi (9)y=(1-x)(2-) (10) 1)y=1 (12) 13)y (14) (15)y=(x+1)ln (16)y L COS T-In r (17)y=x+cos 2 (18)y=xs rsin t+cosar sin r-cos r i (20) cSin ln r 15.求下列复合函数的导函数: (1)y=(x3-4) 3
(4)y = e x sin x − 7 cos x + 5x 2; (5)y = 4√ x + 1 x − 2x 3; (6)y = 3x + 5√ x + 7 x3; (7)y = 1+x 2 1−x2; (8)y = 1 1+x+x2; (9)y = x (1−x)(2−x); (10)y = 1 1+√ x − 1 1− √ x; (11)y = 1+√ x 1− √ x; (12)y = 1 3 √ x + √3 x; (13)y = x 3 ln x − 1 n x n; (14)y = cos x x4 ln 1 x; (15)y = (x + 1 x ) ln x; (16)y = x cos x−ln x x+1 ; (17)y = 1 x+cos x; (18)y = x sin x+cos x x sin x−cos x; (19)y = xex−1 sin x ; (20)y = x sin x ln x. 15.求下列复合函数的导函数: (1)y = (x 3 − 4)3; 3
(3)y=√a2 (4)y= (5) )y=是lm|a+ (7)y=ln(x+va2+x2); (9)y=cos(cs√x); (10)y=cos r-cos 3 c; (11y=-32; (12)y=arcsin(sin r cos c); (14) y=e-z+2 (15)y=nv (16)y=e2sin3x+号; (17)y=出(k,u为常数; (18)y=xVa2-x2+、ax (19)y=sin" cos nz: (20) In
(2)y = x(a 2 + x 2 ) √ a 2 − x 2; (3)y = √ x a 2−x2; (4)y = 3 q 1+x3 1−x3; (5)y = ln(ln x); (6)y = 1 2 ln ¯ ¯a+x a−x ¯ ¯; (7)y = ln(x + √ a 2 + x 2); (8)y = ln tan x 2; (9)y = cos(cos √ x); (10)y = cos3 x − cos 3x; (11)y = √ 1 2π e −3x 2; (12)y = arcsin(sin x cos x); (13)y = arctan 2x 1−x2; (14)y = e −x 2 +2x; (15)y = ln q(x+2)(x+3) x+1 ; (16)y = e 2x sin 3x + x 2 2 ; (17)y = e −kx sin ωx 1+x (k, ω为常数; (18)y = x √ a 2 − x 2 + √ x a 2−x2; (19)y = sinn x cos nx; (20)y = ln √ 1+x− √ √ 1−x 1+x+ √ 1−x. 4
16.用对数求导法求下列函数的导函数 (1) (2)y=÷ (5) (x>0) (6)y (1+x)2,(x>0); (7)y=rtant, (a>0); (8)y=asnx,(a>0) 17.设f(x)是对x可求导的函数,求出 1)y=f(x2) (2)y= f(e e (3)y=f(f(f(x) l8.设y(x)和(x)是对x可求导的函数,求: √p2(x)+2(x); (2)y= arctan par(v(a)+O) (3)y=yv(x)(v(x)>0,y(x)≠0 )(v(x)>0.,y(x)>0.,y(x)≠1) 19.求下列函数的导函数
16.用对数求导法求下列函数的导函数: (1)y = x q1−x 1+x; (2)y = x 2 1−x q 1+x 1+x+x2; (3)y = (x + √ 1 + x 2) n; (4)y = x x ,(x > 0); (5)y = x ln x ,(x > 0); (6)y = (1 + x) 1 x ,(x > 0); (7)y = x tan x ,(x > 0); (8)y = a sin x ,(a > 0). 17.设f(x)是对x可求导的函数,求dy dx: (1)y = f(x 2 ); (2)y = f(e x )e f(x); (3)y = f(f(f(x))). 18.设ϕ(x)和ψ(x)是对x可求导的函数,求dy dx: (1)y = p ϕ2(x) + ψ2(x); (2)y = arctan ϕ(x) ψ(x) (ψ(x) 6= 0); (3)y = ϕ(xp) ψ(x)(ψ(x) > 0, ϕ(x) 6= 0); (4)y = logϕ(x) ψ(x) (ψ(x) > 0, ϕ(x) > 0, ϕ(x) 6= 1). 19.求下列函数的导函数: 5
(1) (2)y=r arctan -In(1+ t arctan Irz (4)y=arctan(tan2) (5)y=(#)()(a)(a,b>0); (6)y=2Va2-x2+2 arcsin (a>0); 2Va2+x2+2In a+ (8)y=In(arccos y) (a>0); 2微分概念及其计算 1.求下列函数在指定点的微分: (1) 求dy(0,dy(1) (2)y=sex+tanx,求dy(0),dy()和dy(x); (3)y=d arctan yidy(0), dy(a) (4)y=1+是,求d(0.1),d0.01) 2.求下列函数的微分: (2)
(1)y = e ax(cos bx + sin bx); (2)y = x arctan x − 1 2 ln(1 + x 2 ); (3)y = arctan √ 1−x2−1 x + arctan 2x 1−x2; (4)y = arctan(tan2 x); (5)y = (a b ) x ( b x ) a ( x a ) b (a, b > 0); (6)y = x 2 √ a 2 − x 2 + a 2 2 arcsin x a (a > 0); (7)y = x 2 √ a 2 + x 2 + a 2 2 ln ¯ ¯ ¯ x + √ a 2 + x 2 ¯ ¯ ¯(a > 0); (8)y = ln(arccos √ 1 x ); (9)y = x a a + a x a + a a x (a > 0); (10)y = 1 6 ln (x+1)2 x2−x+1 + √ 1 3 arctan 2x√−1 3 . §2 微分概念及其计算 1.求下列函数在指定点的微分: (1)y = anx n + an−1x n−1 + · · · + a1x + a0 ,求dy(0), dy(1); (2)y = sec x + tan x,求dy(0), dy( π 4 )和dy(π); (3)y = 1 a arctan x a,求dy(0), dy(a); (4)y = 1 x + 1 x2,求dy(0.1), dy(0.01). 2.求下列函数的微分: (1)y = x 1−x2; (2)y = x ln x − x; 6
+Inc-e (5)y=sina 6)y= In tan(+哥)小 3.设u,是x的可微函数,求dy: + 4.求下列函数的微分dy: nt, t=In(3 +1): (2)y=ln(3t+1),t x3-2x+5 (4)y=arctan u, u=(Int)2, t=1+r2-cotr §3隐函数与参数方程微分法 1求下列隐函数的导数 +=1(a,b为常数 (2)y2=2pr(P为常数); (3)x2+xy+y2=a2(a为常数) 7
(3)y = √ x + ln x − √ 1 x; (4)y = arcsin √ 1 − x 2; (5)y = e sin x 2; (6)y = ln ¯ ¯tan(x 2 + π 4 ) ¯ ¯. 3.设u, v是x的可微函数,求dy: (1)y = arctan u v; (2)y = ln √ u 2 + v 2; (3)y = ln sin(u + v); (4)y = √ 1 u2+v 2. 4.求下列函数的微分dy: (1)y = sin2 t, t = ln(3x + 1); (2)y = ln(3t + 1), t = sin2 x; (3)y = e 3u , u = 1 2 ln t, t = x 3 − 2x + 5; (4)y = arctan u, u = (ln t) 2 , t = 1 + x 2 − cot x. §3 隐函数与参数方程微分法 1.求下列隐函数的导数dy dx: (1)x 2 a 2 + y 2 b 2 = 1(a, b为常数); (2)y 2 = 2px(p为常数); (3)x 2 + xy + y 2 = a 2 (a为常数); 7
(5)y=x+ (6)x3+y3=a3(a为常数) (7)y=cos(a +y) (8)y=r+ arctan 1-In(a +y) (10)arctan=Invx2+y 2.求下列参数方程的导数 (2) e cos In tan 2 +cos t) y=asin t 3.求函数y=y(a)在指定点的导数: COS 号siny,(受,0) (2)yer+lny=1,(0,1) r=t- sin t 在t=,丌处;
(4)x 3 + y 3 − xy = 0; (5)y = x + 1 2 sin y; (6)x 2 3 + y 2 3 = a 2 3 (a为常数); (7)y = cos(x + y); (8)y = x + arctan y; (9)y = 1 − ln(x + y) + e y; (10)arctan y x = ln p x 2 + y 2. 2.求下列参数方程的导数: (1) x = t 1+t y = 1−t 1+t ; (2) x = sin2 t y = cos2 t ; (3) x = e 2t cos2 t y = e 2t sin2 t ; (4) x = a(ln tan t 2 + cost) y = a sin t . 3.求函数y = y(x)在指定点的导数: (1)y = cos x + 1 2 sin y,( π 2 , 0); (2)yex + ln y = 1,(0, 1); (3) x = t − sin t, y = 1 − cost, 在t = π 2 , π处; 8
1 (4) 处 y t3, 4.一个圆锥型容器,深度为10m,上面的顶圆半径为4m (1)灌入水时,求水的体积V对水面高度h的变化率 (2)求体积V对容器截面圆半径R的变化率. 设 t, y (1)求y/(t) (2)证明曲线的切线被坐标轴所截的长度为一个常数 6.证明:曲线 =a(cost+tsint) 上任一点的法线到原点的距离 cost 恒等于c §4高阶微商与高阶微分 1求下列函数在指定点的高阶导数: (1)f(x)=3x3+4x2-5x-9,求(1),P"(1,f(4(1); ④x,求fO,(1,-1) 2.求下列函数的高阶导数: lnx,求y" 求y"; )y=x2e2n,求y 求y
(4) x = 1 − t 2 , y = t − t 3 , 在t = √ 2 2 , √ 3 3 处. 4.一个圆锥型容器,深度为10m,上面的顶圆半径为4m. (1)灌入水时,求水的体积V对水面高度h 的变化率; (2)求体积V对容器截面圆半径R的变化率. 5.设x = a cos3 t, y = a sin3 t. (1)求y 0 (t); (2)证明曲线的切线被坐标轴所截的长度为一个常数. 6.证明:曲线 x = a(cost + tsin t) y = a(sin t − t cost) 上任一点的法线到原点的距离 恒等于a. §4 高阶微商与高阶微分 1.求下列函数在指定点的高阶导数: (1)f(x) = 3x 3 + 4x 2 − 5x − 9,求f 00(1), f000(1), f(4)(1); (2)f(x) = √ x 1+x2 ,求f 00(0), f00(1), f00(−1). 2.求下列函数的高阶导数: (1)y = x ln x,求y 00 ; (2)y = e −x 2,求y 000 ; (3)y = x 2 e 2x ,求y (n); (4)y = arcsin √ x 1−x2 ,求y (n); 9
(5)y=x5cosx,求y/( (6)y=x3 求 3.求下列函数的n阶导数 l 4.求下列函数的n阶导数: (2) (3)y=xl=s; (6)y=2InT 5.设f(x)的各阶导数存在,求"及y". f(x2) 2)y=f( (3)y=f(e-); (4)y=f(nx); (5)y=f(f(x) 6.若(以)c点,x≠0 证明f(n)(0) 0.x=0
(5)y = x 5 cos x,求y (50); (6)y = x 3 e x−e −x 2 ,求y (30). 3.求下列函数的n阶导数: (1)y = a x; (2)y = ln x. 4.求下列函数的n阶导数: (1)y = 1 x(1−2x); (2)y = sin2 x; (3)y = 1 x2−2x−8; (4)y = e x x ; (5)y = ln x+2 1−x; (6)y = 2x ln x. 5.设f(x)的各阶导数存在,求y 00及y 000. (1)y = f(x 2 ); (2)y = f( 1 x ); (3)y = f(e −x ); (4)y = f(ln x); (5)y = f(f(x)). 6.若f(x) = e − 1 x2 , x 6= 0 0, x = 0 ,证明f (n) (0) = 0. 10