第25章概率初步 小结与复习 要点梳理 考点讲练 课堂小结 课后作业
小结与复习 第25章 概率初步 要点梳理 考点讲练 课堂小结 课后作业
要点梳理 、事件的分类及其概念 必然事件 确定事件 事件 不可能事件 随机事件 1.在一定条件下必然发生的事件,叫做必然事件 2在一定条件下不可能发生的事件,叫做不可能事件; 3.在一定条件下可能发生也可能不发生的事件,叫做随 机事件
一、事件的分类及其概念 要点梳理 事件 确定事件 随机事件 必然事件 不可能事件 1.在一定条件下必然发生的事件,叫做必然事件; 2.在一定条件下不可能发生的事件,叫做不可能事件; 3.在一定条件下可能发生也可能不发生的事件,叫做随 机事件
二、概率的概念 1.概率:一般地,对于一个随机事件A,我们把刻画 其发生可能性大小的数值,称为随机事件A发生的概 率,记作P(A) 事件发生的可能性越来越小 概率的值L 不可能事件 必然事件 事件发生的可能性越来越大
1.概率: 一般地,对于一个随机事件A,我们把刻画 其发生可能性大小的数值,称为随机事件A发生的概 率,记作P(A). 二、概率的概念 0 1 事件发生的可能性越来越大 事件发生的可能性越来越小 不可能事件 必然事件 概率的值 2
、随机事件的概率的求法 ①当实验的所有结果不是有限个,或各种可能结果发 生的可能性不相等时,我们用大量重复试验中随机事件 发生的稳定频率来估计概率. ②频率与概率的关系:两者都能定量地反映随机事件 可能性的大小,但频率具有随机性,概率是自身固有 的性质,不具有随机性
三、随机事件的概率的求法 1.①当实验的所有结果不是有限个,或各种可能结果发 生的可能性不相等时,我们用大量重复试验中随机事件 发生的稳定频率来估计概率. ②频率与概率的关系:两者都能定量地反映随机事件 可能性的大小,但频率具有随机性,概率是自身固有 的性质,不具有随机性
2.概率的计算公式: 般地,如果在一次试验中,有n种可能的结果, 并且它们发生的可能性都相等,那么出现每一种结果 的概率都是 如果事件A包括其中的m种可能的结果,那么事件 A发生的概率 P(A)=n+m+…+ nn
2.概率的计算公式: 一般地,如果在一次试验中,有n种可能的结果, 并且它们发生的可能性都相等,那么出现每一种结果 的概率都是 . 如果事件A包括其中的m种可能的结果,那么事件 A发生的概率 P(A)= + +…+ n 1 n 1 n 1 m个 = n m 1 n
四、列表法 当一次试验要涉及两个因素,并且可能出现的结果 数目较多时,为了不重不漏的列出所有可能的结果,通 常采用列表法.列表法中表格构造特点 一个因素所包含的可能情况 ■■■■■■■■■「■■■層■■■■■副■■ 另一个因 素所包含 两个因素所组合的 3个因素 的可能情 所有可能情况,即n更多的因素 况 时,怎么办? 在所有可能情况n中,再找到满足条件的事 件的个数m,最后代入公式计算
当一次试验要涉及两个因素,并且可能出现的结果 数目较多时,为了不重不漏的列出所有可能的结果,通 常采用列表法. 一个因素所包含的可能情况 另一个因 素所包含 的可能情 况 两个因素所组合的 所有可能情况,即n 在所有可能情况n中,再找到满足条件的事 件的个数m,最后代入公式计算. 列表法中表格构造特点: 当一 次试验中涉 及3个因素或 更多的因素 时,怎么办? 四、列表法
五、树状图法 当一次试验中涉及2个因素或更多的因素时,为了 不重不漏地列出所有可能的结果通常采用“树状图” 个试验 如一个试验中涉第一个因数A B 及2个或3个因数, 第一个因数中有2 种可能情况第二第二个 23 个因数中有3种可 人入入人 能的情况第三个第三个 a b a b a bababa b 因数中有2种可能 的情况 n=2×3×2=12
当一次试验中涉及2个因素或更多的因素时, 为了 不重不漏地列出所有可能的结果,通常采用“树状图”. 树形图的画法: 一个试验 第一个因数 第二个 第三个 如一个试验中涉 及2个或3个因数, 第一个因数中有2 种可能情况;第二 个因数中有3种可 能的情况;第三个 因数中有2种可能 的情况. A B 1 2 3 1 2 3 a b a b a b a b a b a b n=2×3×2=12 五、树状图法
考点讲练 考点一事件的判断和概率的意义 例1下列事件是随机事件的是(D) A明天太阳从东方升起 B任意画一个三角形,其内角和是360 C通常温度降到0C以下,纯净的水结冰 D射击运动员射击一次,命中靶心
考点一 事件的判断和概率的意义 考点讲练 例1 下列事件是随机事件的是( ) A.明天太阳从东方升起 B.任意画一个三角形,其内角和是360° C.通常温度降到0℃以下,纯净的水结冰 D.射击运动员射击一次,命中靶心 D
针对训练 1.闭上眼睛从布袋中随机地摸出1个球,恰是红球的 概率是二”的意思是(B) A.布袋中有2个红球和5个其他颜色的球 B.如果摸球次数很多,那么平均每摸7次,就有2次 摸中红球 C.摸7次,就有2次摸中红球 D.摸7次,就有5次摸不中红球
1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的 概率是 ”的意思是( ) A.布袋中有2个红球和5个其他颜色的球 B.如果摸球次数很多,那么平均每摸7次,就有2次 摸中红球 C.摸7次,就有2次摸中红球 D.摸7次,就有5次摸不中红球 2 7 B 针对训练
2.下列事件中是必然事件的是(D) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
2.下列事件中是必然事件的是( ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上 D