高效演练知能提升 A级基础巩固 、选择题 1.在等比数列{an中,a2=4,m=16′则a3a6+aas的值是() B.2 答案:C 2.等差数列{an}的公差为2,若a2,a,a成等比数列,则{an}的前n项和Sn=() A.m(n+1) n n(n+1) 1) 2 解析:因为a2,a4,a8成等比数列, 所以a=a2a,即(a1+32=(a1+d)(a1+7d, 将d=2代入上式,解得a1=2, 所以S=2水n(n-1)2 =H(n+1) 答案:A 3.在等比数列{a}中,aa1=6,a4+a14=5,则望等于() 2 解析:因为ana=a;a14=6,a4+a14=5 3 所以 a14=3 所以y=2=y=3 所以 答案:C 4.在1与100之间插入n个正数,使这n+2个数成等比数列,则插入的n个数的积为 C.100
A 级 基础巩固 一、选择题 1.在等比数列{an}中,a2=4,a7= 1 16,则 a3a6+a4a5 的值是( ) A.1 B.2 C.1 2 D.1 4 答案:C 2.等差数列{an}的公差为 2,若 a2,a4,a8 成等比数列,则{an}的前 n 项和 Sn=( ) A.n(n+1) B.n(n-1) C. n(n+1) 2 D. n(n-1) 2 解析:因为 a2,a4,a8 成等比数列, 所以 a 2 4=a2·a8,即(a1+3d) 2=(a1+d)·(a1+7d), 将 d=2 代入上式,解得 a1=2, 所以 Sn=2n+ n(n-1)·2 2 =n(n+1). 答案:A 3.在等比数列{an}中,a7·a11=6,a4+a14=5,则a20 a10 等于( ) A.2 3 B.3 2 C.2 3 或 3 2 D.- 2 3 或-3 2 解析:因为 a7·a11=a4·a14=6,a4+a14=5, 所以 a4=2, a14=3 或 a4=3, a14=2, 所以 q 10= a14 a4 = 3 2 或 q 10= 2 3 , 所以a20 a10 =q 10= 3 2 或 a20 a10 = 2 3 . 答案:C 4.在 1 与 100 之间插入 n 个正数,使这 n+2 个数成等比数列,则插入的 n 个数的积为 ( ) A.10n B.n 10 C.100n D.n 100
解析:设这n+2个数为a,a2,…,an+1,an+2, 则a (aan+2)2=(100)2=10° 答案 5.等比数列{an}中,an∈R',a4as=32,则loga1+loga2+…+ logas的值为() B.20 D.128 解析:log2a1+log2a2+…+log2ag=log2(ana2a3…as)=log2(as)=4log232=20 答案:B 二、填空题 6.等比数列{an}中,aan→aq>anq"-1, 因为a10且1--<0解得:0<q<1 答案:0<q<1 7.已知在公比为q的等比数列{an}中,a5+a=q,则a(a+2a6+a0)的值为 解析:因为as+a=-q, 所以 a4+a8= 所以a(a2+26+a0)=a2+2a+an0=ai+2a+a=(a4+a)3=1 答案 8.已知在等比数列{an}中,a3an=4a,数列{bn}是等差数列,且a=b,则b+b= 解析:aa11=4m=a, 所以a=4(=0舍去), 因为{bn}是等差数列 所以b=3bs+b)
解析:设这 n+2 个数为 a1,a2,…,an+1,an+2, 则 a2·a3·…·an+1=(a1an+2) n 2=(100) n 2=10n . 答案:A 5.等比数列{an}中,an∈R +,a4·a5=32,则 log2a1+log2a2+…+log2a8 的值为( ) A.10 B.20 C.36 D.128 解析:log2a1+log2a2+…+log2a8=log2(a1·a2·a3·…·a8)=log2(a4a5) 4=4log232=20. 答案:B 二、填空题 6.等比数列{an}中,a1<0,{an}是递增数列,则满足条件的 q 的取值范围是 ______________. 解析:由 an+1>an⇒a1q n>a1q n-1, 因为 a1<0, 所以 q n<q n-1⇒q n 1- 1 q <0 对任意正整数 n 都成立. 所以 q>0 且 1- 1 q <0 解得:0<q<1. 答案:0<q<1 7.已知在公比为 q 的等比数列{an}中,a5+a9= 1 2 q,则 a6(a2+2a6+a10)的值为________. 解析:因为 a5+a9= 1 2 q, 所以 a4+a8= 1 2 , 所以 a6(a2+2a6+a10)=a6a2+2a 2 6+a6a10=a 2 4+2a4a8+a 2 8=(a4+a8) 2= 1 4 . 答案:1 4 8.已知在等比数列{an}中,a3a11=4a7,数列{bn}是等差数列,且 a7=b7,则 b5+b9= ________. 解析:a3a11=4a7=a 2 7, 所以 a7=4(a7=0 舍去), 因为{bn}是等差数列, 所以 b7= 1 2 (b5+b9)
又b=a7,所以b5+b=8 答案:8 三、解答题 9在正项等比数列{an}中,a1as-2aas+aa7=36,a2a+2aa6+a6=100,求数列{an} 的通项公式 解:因为aas=a3,aa=aB3, 所以由题意,得a3-2aas+a=36, 同理得a+2a3a5+a3=100, (a3-as)2=36, 所以 )2=100 a3-as=±6 因为an>0,所以 解得 m1= 分别解得 所以 或 10.三个正数成等比数列,它们的和等于21,倒数的和等于1,求这三个数 解:设三个数为,a,ag(a,q0), +a+aq=21 由题 q q+1+1 所以 →a2=21×1=36 所以a=6,q=2或 所以三个数为3,6,12或12,6,3 B级能力提升
又 b7=a7,所以 b5+b9=8. 答案:8 三、解答题 9.在正项等比数列{an}中,a1a5-2a3a5+a3a7=36,a2a4+2a2a6+a4a6=100,求数列{an} 的通项公式. 解:因为 a1a5=a 2 3,a3a7=a 2 5, 所以由题意,得 a 2 3-2a3a5+a 2 5=36, 同理得 a 2 3+2a3a5+a 2 5=100, 所以 (a3-a5)2=36, (a3+a5)2=100, 因为 an>0,所以 a3-a5=±6, a3+a5=10. 解得 a3=2, a5=8, 或 a3=8, a5=2. 分别解得 a1= 1 2 , q=2, 或 a1=32, q= 1 2 . 所以 an=a1q n-1=2 n-2 或 an=a1q n-1=2 6-n . 10.三个正数成等比数列,它们的和等于 21,倒数的和等于 7 12,求这三个数. 解:设三个数为a q ,a,aq(a,q>0), 由题 a q +a+aq=21, q a + 1 a + 1 aq = 7 12, 所以 a 1 q +1+q =21, 1 a q+1+ 1 q = 7 12, ⇒a 2=21× 12 7 =36, 所以 a=6,q=2 或 1 2 , 所以三个数为 3,6,12 或 12,6,3. B 级 能力提升
1.等比数列x,3x+3,6x+6,…的第四项等于( A.-24 B.0 C.12 D.24 解析:由题意知3x+3)2=x(6x+6),即x2+4x+3=0,解得x=-3或x=-1(舍去), 所以等比数列的前3项是-3,-6,-12,则第四项为-24 答案:A 2.数列{an}是等差数列,若a1+1,a3+3,a6+5构成公比为q的等比数列,则q 解析:设{an}的公差为d,则a3+3=a1+1+2d+2,as+5=a1+1+4d+4,由题意可 得(a3+3)2=(a1+1)(a5+5) 所以(a1+1)+2(d+1)2=(a1+1)(a+1)+4(d+1), 所以(a1+1)2+4(d+1)a1+1)+[2d+1)2=(a1+1)2+4(a1+1)(d+1), 所以d=-1,所以a3+3=a1+1, a3+3 所以公比q= 答案:1 3.容器A中盛有浓度为a%的农药mL,容器B中盛有浓度为b%的同种农药mL,A, B两容器中农药的浓度差为2%a>b),先将A中农药的倒入B中,混合均匀后,再由B 倒入一部分到A中,恰好使A中保持mL,问至少经过多少次这样的操作,两容器中农药的 浓度差小于1%? 解:设第n次操作后,A中农药的浓度为an,B中农药的浓度为bn,则0=a%,b= b=5a0+4b0),a1=40+4b1=4a0+bo) b=3a1+4b),a=41+4b2=34a+b) 所以an-b 1)==(a0-b0)
1.等比数列 x,3x+3,6x+6,…的第四项等于( ) A.-24 B.0 C.12 D.24 解析:由题意知(3x+3)2=x(6x+6),即 x 2+4x+3=0,解得 x=-3 或 x=-1(舍去), 所以等比数列的前 3 项是-3,-6,-12,则第四项为-24. 答案:A 2.数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________. 解析:设{an}的公差为 d,则 a3+3=a1+1+2d+2,a5+5=a1+1+4d+4,由题意可 得(a3+3)2=(a1+1)(a5+5). 所以[(a1+1)+2(d+1)]2=(a1+1)[(a1+1)+4(d+1)], 所以(a1+1)2+4(d+1)(a1+1)+[2(d+1)]2=(a1+1)2+4(a1+1)(d+1), 所以 d=-1,所以 a3+3=a1+1, 所以公比 q= a3+3 a1+1 =1. 答案:1 3.容器 A 中盛有浓度为 a%的农药 mL,容器 B 中盛有浓度为 b%的同种农药 mL,A, B 两容器中农药的浓度差为 20%(a>b),先将 A 中农药的1 4 倒入 B 中,混合均匀后,再由 B 倒入一部分到 A 中,恰好使 A 中保持 mL,问至少经过多少次这样的操作,两容器中农药的 浓度差小于 1%? 解:设第 n 次操作后,A 中农药的浓度为 an,B 中农药的浓度为 bn,则 a0=a%,b0= b%. b1= 1 5 (a0+4b0),a1= 3 4 a0+ 1 4 b1= 1 5 (4a0+b0); b2= 1 5 (a1+4b1),a2= 3 4 a1+ 1 4 b2= 1 5 (4a1+b1); … bn= 1 5 (an-1+4bn-1). an= 1 5 (4an-1+bn-1), 所以 an-bn= 3 5 (an-1-bn-1)= 3 5 (a0-b0)· 3 5 n-1
因为a0-b 所以an-bn2=13) 依题意知(3)<1%,n∈N, 解得n≥6 故至少经过6次这样的操作,两容器中农药的浓度差小于1%
因为 a0-b0= 1 5 , 所以 an-bn= 1 5 · 3 5 n . 依题意知1 5 · 3 5 n <1%,n∈N*, 解得 n≥6. 故至少经过 6 次这样的操作,两容器中农药的浓度差小于 1%