全程设计 7.3.5 已知三角数值求角
7.3.5 已知三角函数值求角
导期 课标定位 素养阐释 1掌握已知三角函数值求角的方法,并能根据已知的三角函数 值求角. 2.能用符号arcsin七,arccos七,arctan x.表示角. 3.加强数学抽象、直观想象、数学运算能力的培养
导航 课标定位 素养阐释 1.掌握已知三角函数值求角的方法,并能根据已知的三角函数 值求角. 2.能用符号arcsin x,arccos x,arctan x表示角. 3.加强数学抽象、直观想象、数学运算能力的培养
课前·基础认知 课堂·重难突破 随堂训练 易错辨析
易 错 辨 析 课前·基础认知 课堂·重难突破 随 堂 训 练
导航 课前·基础认知 已知正弦值求角 【问题思考】 1.函数=sin,x∈Ry∈[-1,1,对任一x值,有几个y值与之对应? 对于任一y值,有几个x值与之对应? 提示:一个;无数个 2对于函数=sinx,x∈[究,引∈-1,川对于任值,有多少 个x值与之对应? 提示:一个
导航 课前·基础认知 一、已知正弦值求角 【问题思考】 1.函数y=sin x,x∈R,y∈[-1,1],对任一x值,有几个y值与之对应? 对于任一y值,有几个x值与之对应? 提示:一个;无数个. 2.对于函数y=sin x, ,y∈[-1,1],对于任一y值,有多少 个x值与之对应? 提示:一个
导期 3.填空:任意给定一个y∈l,,当simy且x∈[,时,通 常记作x= 4.做一做:(1)arcsin0= (2)arcsin(= ;arcsin 1= 答案:(1)0(2)g
导航
导航 二、已知余弦值求角 【问题思考】 2 1.已知cos之,若x∈0,,则的值是什么?若x∈m,2元,则x 的值是什么? 提示平 2.填空:在区间[0,π内,满足cosx=y0y∈[-1,1)的x只有一个,记 作,即x=
导航 二、已知余弦值求角 【问题思考】 1.已知 ,若x∈[0,π],则x的值是什么?若x∈[π,2π],则x 的值是什么? 2.填空:在区间[0,π]内,满足cos x=y(y∈[-1,1])的x只有一个,记 作 arccos y ,即x= arccos y
导航 3.做一做:(1)arccos0= (2)在区间[0,内,满足cosx=3的角x= 答案:(5(2 arccos(-
导航 3.做一做:(1)arccos 0= ; (2)在区间[0,π]内,满足cos x= 的角x=
导航 三、已知正切值求角 【问题思考】 1.若x∈(2,),且an√3,则适合条件的角有几个?它们各 是什么? 提示:一个号 2.填空:在区间(空,)内,满足n(∈R)的x只有一个,记 作,即=
导航 三、已知正切值求角 【问题思考】
导航 3.做一做:(1)arctan(-1)= 3 (2)arctan= 3 ③若x∈(受,》,且tan=π,则 答案:(I)平(2g(3)arctan元
导航
【思考辨析】 判断下列说法是否正确,正确的在它后面的括号里画“√,错 误的画“X ()①arcsin表示区间((0,罗)内的一个角.( (2)若cosa-4,a∈[π,2m,则=arccos()) 3)若tana=l,则a-平或5π( (4)在区间0,2π上,满足条件sinx=a(-1≤a≤1)的x有2个.( (5)在区间I0,2π上,满足条件cosx=(-1≤M≤1)的x有2个.( ⑥)在区间受,上,满足条件tanx-a(a∈R)的x只有1个.(
导航 【思考辨析】 判断下列说法是否正确,正确的在它后面的括号里画“√” ,错 误的画“×”