第2课时复杂图形的三视图 教学目标: 会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化 2.会根据三视图描述原几何体 教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。 教学难点:几何体与视图之间的相互转化。培养空间想像观念 课型:新授课 教学方法:观察实践法 教学过程设计 教学内容及过程 补充完善 实物观察、空间想像 观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位 置经过想像,再抽象出这两个直棱柱的主视图,左视图和俯视图 绘制:请你将抽象出来的三种视图画出来,并与同伴交流 学生观察自己所摆设的 比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画两个直棱柱实物。想 的对不对?谈谈你的看法 抽象 拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随制一一比较一一拓展 改变?试一试 注意:在画视图时, 看得见部分的轮廓线通 三视图画法四注意: 常画成实线,看不见部 1.注意物体摆放的位置 分的轮廓通常画成虚 2.明确三种视图的形状 3.准确三种视图的大小 4.注意实线与虚线的用法 二、典例解析 答案:(1)正方体:(2) 例L.如图,说出下列各几何体的名称,并指出哪些几何体属于棱柱,其中可以圆锥:(3)三棱形:(4) 由平面图形旋转得到的几何体是哪几个? 四棱形:(5)圆台;(6) 球;(7)圆柱;(8)长 方体;(9)长方体;(10) 四棱柱:(11)六棱锥 (2) (3) (4) (5) (6) (12)五棱柱.其中(1) (3),(4),(8),(9), 11),(12)属于棱柱 体:(2),(5),(6),(7) (7) (8) (9) 是由不同的平面图形旋 (10) (11) (12) 转得到的几何体
第 2 课时 复杂图形的三视图 教学目标: 1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。 2. 会根据三视图描述原几何体。 教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。 教学难点:几何体与视图之间的相互转化。培养空间想像观念。 课型:新授课 教学方法:观察实践法 教学过程设计 教 学 内 容 及 过 程 补充完善 一、实物观察、空间想像 观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位 置经过想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。 绘制:请你将抽象出来的三种视图画出来,并与同伴交流。 比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画 的对不对?谈谈你的看法。 拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随 之改变?试一试。 三视图画法四注意: 1.注意物体摆放的位置 2.明确三种视图的形状 3.准确三种视图的大小 4.注意实线与虚线的用法 学生观察自己所摆设的 两 个 直棱 柱实 物。 想 像――抽象――绘 制――比较――拓展 注意:在画视图时, 看得见部分的轮廓线通 常画成实线,看不见部 分 的 轮廓 通常 画成 虚 线。 二、典例解析 例 1.. 如图,说出下列各几何体的名称,并指出哪些几何体属于棱柱,其中可以 由平面图形旋转得到的几何体是哪几个? 答案:(1)正方体;(2) 圆锥;(3)三棱形;(4) 四棱形;(5)圆台;(6) 球;(7)圆柱;(8)长 方体;(9)长方体;(10) 四棱柱;(11)六棱锥; (12)五棱柱.其中(1), (3),(4),(8),(9), (11),(12)属于棱柱 体;(2),(5),(6),(7) 是由不同的平面图形旋 转得到的几何体. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
对应训练 1.一个四棱柱的俯视图如图3所示,则这个四棱柱的主视图和左视图可能是 答案:1.D 实线,虚线; 圆锥,正四棱锥,倒放 的正三棱柱等: 图3 4.A 2.画视图时,看得见的轮廓线通常画成,看不见的部分通常画成 3举两个左视图是三角形的物体例子:, 4.下列图形中左视图是 的是 5画出右方实物的三视图 解 主视图 左视图 俯视图 巧解与探究 例2.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌答案:12 子上共有个碟子。 主视图 俯视图 左视图 对应训练 下图是正方体分割后的一部分,它的另一部分为下列图形中的( 答案:B
对应训练: 1.一个四棱柱的俯视图如图 3 所示,则这个四棱柱的主视图和左视图可能是( ) 2.画视图时,看得见的轮廓线通常画成 ,看不见的部分通常画成 。 3.举两个左视图是三角形的物体例子: , 。 4. 下列图形中左视图是 的是( ) A B C D 5.画出右方实物的三视图。 解: 巧解与探究: 例 2.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌 子上共有 个碟子。 对应训练: 下图是正方体分割后的一部分,它的另一部分为下列图形中的( ) 答案:1.D 2.实线,虚线; 3.圆锥,正四棱锥,倒放 的正三棱柱等; 4.A 答案:12 答案:B 图 3 A. B. C. D. 俯视图 主视图 左视图 主视图 左视图 俯视图
能力升华 由主视图、俯视图确定小立方体的个数 例3.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图1所 分析:根据主视图和俯 (1)请你画出这个几何体的一种左视图: (2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值视图,先确定左视图的 可能情况,然后再确定 实物情况得出n的可能 主视图 俯视图 图1 解:(1)左视图共有5种情况,只要画对其中之一便可.根据主视图和俯视图可 综合判出简单几何体的可能情况(其中俯视图中的数字表示垂直方向小正方体的 个数)如下图所示 俯 视 图 左 视 由由田用 图 图 左视 (2)由上面(1)的9种可能情况可知:n的所有可能值为:8,9,l0,11 对应训练: 如图所示的积木是有16块棱长为am的正方体堆积而成的.请求出它的表面积
能力升华: 由主视 图、俯视图确定小立方体的个数 例 3.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图 1 所 示. (1)请你画出这个几何体的一种左视图; (2)若组成这个几何体的小正方体的块数为 n ,请你写出 n 的所有可能值. 解:(1)左视图共有 5 种情况,只要画对其中之一便可.根据主视图和俯视图可 综合判出简单几何体的可能情况(其中俯视 图中的数字表示垂直方向小正方体的 个数)如下图所示. 俯 视 图 左 视 图 俯 视 图 左 视 图 (2)由上面(1)的 9 种可能情况可知: n 的所有可能值为: 8 9 10 11 ,,, . 对应训练: 如图所示的积木是有 16 块棱长为 acm 的正方体堆积而成的.请求出它的表面积 _____。 1 1 1 2 3 2 3 1 1 1 2 3 1 1 2 2 3 1 2 2 2 3 1 2 1 1 2 1 2 3 2 1 1 2 3 2 2 1 2 3 2 3 1 2 3 分析:根据主视图和俯 视图,先确定左视图的 可能情况,然后再确定 实物情况,得出 n 的可能 值.
答案:50a2cm 四、课堂总结、 本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想像能力。在画 实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体 在此基础上再画其视图。而且也会根据三视图描述几何体 本节课主要是通过观察一一绘制一一比较一一拓展,来完成学习内容的。在学习 中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。 五、布置作业 课本习题5455
答案:50a 2 cm2 四、课堂总结、 本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想像能力。在画 实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体, 在此基础上再画其视图。而且也会根据三视图描述几何体。 本节课主要是通过观察――绘制――比较――拓展,来完 成学习内容的。在学习 中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。 五、布置作业 课本习题 5.4 5.5