第2课时平均数、中位数和众数的应用 教学目标一 千均价格是(12×1+10×2+8×3)6=2 1.进一步认识平均数、众数、中位数:(元/kg),∴小琳划算.故选C 重点) 2.知道平均数、中位数和众数在描述 方法总结:数据的“权”能够反映数据 数据时的差异:(重点) 3.能灵活应用这三个数据代表解决实的相对“重要程度”,要突出某个数据,只 际问题.(难点) 需要给它较大的“权”,“权”的差异对结果 会产生直接的影响 数学过程 【类型二】中位数的应用 、情境导入 邇例2有13位同学参加学校组织的才艺 2015年9月3日是“中国人民抗日战争表演比赛,已知他们所得的分数互不相同, 胜利暨世界反法西斯战争胜利70周年纪念共设7个获奖名额,某同学知道自己的比赛 日”,要选择部分士兵组成阅兵方阵,在这分数后,要判断自己能否获奖,在这13名 个问题中最值得我们关注的是士兵身高的同学成绩的统计量中只需知道一个量,它是 平均数、中位数还是众数?你能作出选择 (填“众数”“中位数”或“平 均数 解析:因为7位获奖者的分数肯定是13 名参赛选手中最高的,所以把13个不同的 分数按从小到大排序,只要知道自己的分数 和中位数就可以知道是否获奖了.故填中位 数 合作探究 方法总结:中位数与数据的排列顺序有 探究点一:平均数、中位数和众数的应 关,受极端值的影响较小,所以当一组数据 【类型一】平均数的应用 例卫假期里小菲和小琳结伴去超市买 中个别数据变化较大时,可以用中位数描述 水果,三次购买的草莓价格和数量如下表, 从平均价格看,买得比较划算的是() 其“平均情况”,但不能充分利用所有数据 匚价格元kg)12108合计水g 小菲购买的数量 的信息 22 6 【类型三】众数的应用 小琳购买的数量 例3抽样调查了某班30位女生所穿鞋 子的尺码,数据如下(单位:码).在这组数 A.一样划算 小菲划算 据的平均数、中位数和众数中,鞋厂最感兴 C.小琳划算D.无法比较 趣的是() 解析:∵小菲购买的平均价格是(12×2 +10×2+8×2)6=10(元/kg),小琳购买的 码号333435|3637
第 2 课时 平均数、中位数和众数的应用 1.进一步认识平均数、众数、中位数; (重点) 2.知道平均数、中位数和众数在描述 数据时的差异;(重点) 3.能灵活应用这三个数据代表解决实 际问题.(难点) 一、情境导入 2015年9月3日是“中国人民抗日战争 胜利暨世界反法西斯战争胜利 70 周年纪念 日”,要选择部分士兵组成阅兵方阵,在这 个问题中最值得我们关注的是士兵身高的 平均数、中位数还是众数?你能作出选择 吗? 二、合作探究 探究点一:平均数、中位数和众数的应 用 【类型一】 平均数的应用 假期里小菲和小琳结伴去超市买 水果,三次购买的草莓价格和数量如下表, 从平均价格看,买得比较划算的是( ) 价格/(元/kg) 12 10 8 合计/kg 小菲购买的数量 /kg 2 2 2 6 小琳购买的数量 /kg 1 2 3 6 A.一样划算 B.小菲划算 C.小琳划算 D.无法比较 解析:∵小菲购买的平均价格是(12×2 +10×2+8×2)÷6=10(元/kg),小琳购买的 平均价格是(12×1+10×2+8×3)÷6= 28 3 (元/kg),∴小琳划算.故选 C. 方法总结:数据的“权”能够反映数据 的相对“重要程度”,要突出某个数据,只 需要给它较大的“权”,“权”的差异对结果 会产生直接的影响. 【类型二】 中位数的应用 有13位同学参加学校组织的才艺 表演比赛,已知他们所得的分数互不相同, 共设 7 个获奖名额,某同学知道自己的比赛 分数后,要判断自己能否获奖,在这 13 名 同学成绩的统计量中只需知道一个量,它是 __________(填“众数”“中位数”或“平 均数”). 解析:因为 7 位获奖者的分数肯定是 13 名参赛选手中最高的,所以把 13 个不同的 分数按从小到大排序,只要知道自己的分数 和中位数就可以知道是否获奖了.故填中位 数. 方法总结:中位数与数据的排列顺序有 关,受极端值的影响较小,所以当一组数据 中个别数据变化较大时,可以用中位数描述 其“平均情况”,但不能充分利用所有数据 的信息. 【类型三】 众数的应用 抽样调查了某班30位女生所穿鞋 子的尺码,数据如下(单位:码).在这组数 据的平均数、中位数和众数中,鞋厂最感兴 趣的是( ) 码号 33 34 35 36 37
人数工?6151 复赛的选手中分别选出2人参加决赛,九(2) A.平均数B.中位数C.众数 班的实力更强一些 法确定 解析:由于众数是数据中出现最多的 方法总结:读懂统计图,从不同的统计 数,故鞋厂最感兴趣的是销售量最多的鞋号图中得到必要的信息是解决问题的关键条 即这组数据的众数.故选C 方法总结:众数是反映一组数据中出现形统计图能清楚地表示出每个项目的数据 次数最多的数据,当一组数据中有不少数据 【类型五】利用“三种数”进行方案 探究 例5在喜迎“中国人民抗日战争胜利 多次重复出现时,众数往往能反映问题 70周年暨世界反法西斯战争胜利70周 【类型四】利用“三种数”对成绩做年”,某校举办校园唱红歌比赛,选出10 出判断 名同学担任评委,并事先拟定从如下四种方 囹例4某中学开展演讲比赛活动,九(1)、案中选择合理方案来确定演唱者的最后得 九(2)班根据初赛成绩各选出5名选手参加分(每个评委打分最高10分) 复赛,两个班各选出的5名选手的复赛成绩 方案1:所有评委给分的平均分 (满分为100分)如下图所示 方案2:在所有评委中,去掉一个最高 分数 分和一个最低分,再计算剩余评委的平均 =九(1班分 方案3:所有评委给分的中位数 九(2)班 方案4:所有评委给分的众数 为了探究上述方案的合理性, 01号2号3号4号5号选手编号先对某个同学的演唱成绩进行统计实 (1)根据上图填写下表: 验,下图是这个同学的得分统计图 人数 平均分中位数众数 (分) 九(1班85 九(2)班 85 (2)结合两班复赛成绩的平均数和中位 3.27.07888.49.8分数 数,分析哪个班级的复赛成绩较好 (1)分别按上述四种方案计算这个同学 (3)如果在每班参加复赛的选手中分别演唱的最后得分: 选出2人参加决赛,你认为哪个班的实力更 (2)根据(1)中的结果,请用统计的知识 强一些?说明理由 说明哪些方案不适合作为这个同学演唱的 解析:(1)根据统计图中的具体数据以及最后得分? 中位数和众数的概念计算;(2)观察数据发 解析:本题关键是理解每种方案的计算 现:平均数相同,则中位数大的较好:(3)方法:(1)方案1:平均数=总分数+10:方 分别计算前两名的平均分,比较其大小 案2:平均数=去掉一个最高分和一个最低 解:(1)85 分的总分数÷8方案3:10个数据,中位数 (2)∵两班的平均数相同,九(1)班的中应是数据从小到大(或从大到小)排列的第 位数高,∴九(1)班的复赛成绩好些 个和第6个数据的平均数;方案4:求出评 (3)∵九(1)班、九(2)班前两名选手的平委给分中,出现次数最多的分数.(2)考虑不 均分分别为92.5分,100分,∴在每班参加受极值的影响,不能有两个得分等原因进行
人数 7 6 15 1 1 A.平均数 B.中位数 C.众数 D.无 法确定 解析:由于众数是数据中出现最多的 数,故鞋厂最感兴趣的是销售量最多的鞋号 即这组数据的众数.故选 C. 方法总结:众数是反映一组数据中出现 次数最多的数据,当一组数据中有不少数据 多次重复出现时,众数往往能反映问题. 【类型四】 利用“三种数”对成绩做 出判断 某中学开展演讲比赛活动,九(1)、 九(2)班根据初赛成绩各选出 5 名选手参加 复赛,两个班各选出的 5 名选手的复赛成绩 (满分为 100 分)如下图所示. (1)根据上图填写下表: 平均分 (分) 中位数 (分) 众数 (分) 九(1)班 85 85 九(2)班 85 80 (2)结合两班复赛成绩的平均数和中位 数,分析哪个班级的复赛成绩较好; (3)如果在每班参加复赛的选手中分别 选出 2 人参加决赛,你认为哪个班的实力更 强一些?说明理由. 解析:(1)根据统计图中的具体数据以及 中位数和众数的概念计算;(2)观察数据发 现:平均数相同,则中位数大的较好;(3) 分别计算前两名的平均分,比较其大小. 解:(1)85 100 (2)∵两班的平均数相同,九(1)班的中 位数高,∴九(1)班的复赛成绩好些; (3)∵九(1)班、九(2)班前两名选手的平 均分分别为 92.5 分,100 分,∴在每班参加 复赛的选手中分别选出 2 人参加决赛,九(2) 班的实力更强一些. 方法总结:读懂统计图,从不同的统计 图中得到必要的信息是解决问题的关键.条 形统计图能清楚地表示出每个项目的数据. 【类型五】 利用“三种数”进行方案 探究 在喜迎“中国人民抗日战争胜利 70 周年暨世界反法西斯战争胜利 70 周 年”,某校举办校园唱红歌比赛,选出 10 名同学担任评委,并事先拟定从如下四种方 案中选择合理方案来确定演唱者的最后得 分(每个评委打分最高 10 分). 方案 1:所有评委给分的平均分; 方案 2:在所有评委中,去掉一个最高 分和一个最低分,再计算剩余评委的平均 分; 方案 3:所有评委给分的中位数; 方案 4:所有评委给分的众数. 为了探究上述方案的合理性, 先对某个同学的演唱成绩进行统计实 验,下图是这个同学的得分统计图: (1)分别按上述四种方案计算这个同学 演唱的最后得分; (2)根据(1)中的结果,请用统计的知识 说明哪些方案不适合作为这个同学演唱的 最后得分? 解析:本题关键是理解每种方案的计算 方法:(1)方案 1:平均数=总分数÷10;方 案 2:平均数=去掉一个最高分和一个最低 分的总分数÷8.方案 3:10 个数据,中位数 应是数据从小到大(或从大到小)排列的第 5 个和第 6 个数据的平均数;方案 4:求出评 委给分中,出现次数最多的分数.(2)考虑不 受极值的影响,不能有两个得分等原因进行
排除 解:(1)方案1:最后得分为×(32+ 7.0+7.8+3×8+3×84+9.8)=7.7; 方案2:最后得分为×(7.0+78+ 3×8+3×84)=8 方案3:最后得分为8 方案4:最后得分为8和84 (2)因为方案1中的平均数受极端数值 的影响,不适合作为这个同学演讲的最后得 分,所以方案1不适合作为最后得分的方 案.因为方案4中的众数有两个,众数失去 了实际意义,所以方案4不适合作为最后得 分的方案 方法总结:给定一组数据,出现次数最 多的那个数,称为这组数据的众数.中位数 的定义:将一组数据从小到大(或从大到小) 依次排列,把中间数据(或中间两数据的平 均数)叫做中位数.平均数=总数÷个数.学 会选用适当的统计量分析问题 三、板书设计 1.利用平均数、中位数和众数解决生 活中的实际问题 2.利用“三种数”对成绩或对方案做 出选择或决策 数学反思 通过这节课的学习,学生的参与性很 强,乐于与同伴交流、探索知识.需要强调 的是:学生有自己的看法和意见,教师不可 一味的否定学生.教师要关注学生思考问题 的过程,千万不要代替学生思考,更不可强 加给学生固定的思维模式
排除. 解:(1)方案 1:最后得分为 1 10 ×(3.2+ 7.0+7.8+3×8+3×8.4+9.8)=7.7; 方案 2:最后得分为 1 10 ×(7.0+7.8+ 3×8+3×8.4)=8; 方案 3:最后得分为 8; 方案 4:最后得分为 8 和 8.4; (2)因为方案 1 中的平均数受极端数值 的影响,不适合作为这个同学演讲的最后得 分,所以方案 1 不适合作为最后得分的方 案.因为方案 4 中的众数有两个,众数失去 了实际意义,所以方案 4 不适合作为最后得 分的方案. 方法总结:给定一组数据,出现次数最 多的那个数,称为这组数据的众数.中位数 的定义:将一组数据从小到大(或从大到小) 依次排列,把中间数据(或中间两数据的平 均数)叫做中位数.平均数=总数÷个数.学 会选用适当的统计量分析问题. 三、板书设计 1.利用平均数、中位数和众数解决生 活中的实际问题 2.利用“三种数”对成绩或对方案做 出选择或决策 通过这节课的学习,学生的参与性很 强,乐于与同伴交流、探索知识.需要强调 的是:学生有自己的看法和意见,教师不可 一味的否定学生.教师要关注学生思考问题 的过程,千万不要代替学生思考,更不可强 加给学生固定的思维模式.